
Package index
-
plot_time_series() - Interactive Plotting for One or More Time Series
-
plot_time_series_boxplot() - Interactive Time Series Box Plots
-
plot_time_series_regression() - Visualize a Time Series Linear Regression Formula
-
plot_acf_diagnostics() - Visualize the ACF, PACF, and CCFs for One or More Time Series
-
plot_anomaly_diagnostics() - Visualize Anomalies for One or More Time Series
-
plot_seasonal_diagnostics() - Visualize Multiple Seasonality Features for One or More Time Series
-
plot_stl_diagnostics() - Visualize STL Decomposition Features for One or More Time Series
-
summarise_by_time()summarize_by_time() - Summarise (for Time Series Data)
-
mutate_by_time() - Mutate (for Time Series Data)
-
pad_by_time() - Insert time series rows with regularly spaced timestamps
-
filter_by_time() - Filter (for Time-Series Data)
-
filter_period() - Apply filtering expressions inside periods (windows)
-
slice_period() - Apply slice inside periods (windows)
-
condense_period() - Convert the Period to a Lower Periodicity (e.g. Go from Daily to Monthly)
-
future_frame() - Make future time series from existing
-
anomalize() - Automatic group-wise Anomaly Detection
-
plot_anomalies()plot_anomalies_decomp()plot_anomalies_cleaned() - Visualize Anomalies for One or More Time Series
-
slidify() - Create a rolling (sliding) version of any function
-
between_time() - Between (For Time Series): Range detection for date or date-time sequences
-
add_time()subtract_time()`%+time%``%-time%` - Add / Subtract (For Time Series)
-
tk_tsfeatures() - Time series feature matrix (Tidy)
Augment Operations (Quickly Add Many Features)
Add multiple columns to the original data. Respects dplyr groups.
-
tk_augment_timeseries_signature() - Add many time series features to the data
-
tk_augment_holiday_signature() - Add many holiday features to the data
-
tk_augment_slidify() - Add many rolling window calculations to the data
-
tk_augment_differences() - Add many differenced columns to the data
-
tk_augment_lags()tk_augment_leads() - Add many lags to the data
-
tk_augment_fourier() - Add many fourier series to the data
-
box_cox_vec()box_cox_inv_vec()auto_lambda() - Box Cox Transformation
-
diff_vec()diff_inv_vec() - Differencing Transformation
-
lag_vec()lead_vec() - Lag Transformation
-
standardize_vec()standardize_inv_vec() - Standardize to Mean 0, Standard Deviation 1 (Center & Scale)
-
normalize_vec()normalize_inv_vec() - Normalize to Range (0, 1)
-
fourier_vec() - Fourier Series
-
log_interval_vec()log_interval_inv_vec() - Log-Interval Transformation for Constrained Interval Forecasting
-
slidify_vec() - Rolling Window Transformation
-
smooth_vec() - Smoothing Transformation using Loess
-
ts_clean_vec() - Replace Outliers & Missing Values in a Time Series
-
ts_impute_vec() - Missing Value Imputation for Time Series
Feature Engineering Operations (Recipe Steps)
Preprocessing & feature engineering operations for use with recipes and the tidymodels ecosystem
-
step_timeseries_signature()tidy(<step_timeseries_signature>) - Time Series Feature (Signature) Generator
-
step_holiday_signature()tidy(<step_holiday_signature>) - Holiday Feature (Signature) Generator
-
step_fourier()tidy(<step_fourier>) - Fourier Features for Modeling Seasonality
Lags & Diffs
See recipes::step_lag() for lagged features.
-
step_diff()tidy(<step_diff>) - Create a differenced predictor
-
step_smooth()tidy(<step_smooth>) - Smoothing Transformation using Loess
-
step_slidify()tidy(<step_slidify>) - Slidify Rolling Window Transformation
-
step_slidify_augment()tidy(<step_slidify_augment>) - Slidify Rolling Window Transformation (Augmented Version)
Variance Reduction
See recipes::step_log() for log transformation.
-
step_box_cox()tidy(<step_box_cox>) - Box-Cox Transformation using Forecast Methods
-
step_log_interval()tidy(<step_log_interval>) - Log Interval Transformation for Constrained Interval Forecasting
-
step_ts_pad()tidy(<step_ts_pad>) - Pad: Add rows to fill gaps and go from low to high frequency
Imputation & Outlier Cleaning
See recipes::step_rollimpute() for rolling imputation.
-
step_ts_impute()tidy(<step_ts_impute>) - Missing Data Imputation for Time Series
-
step_ts_clean()tidy(<step_ts_clean>) - Clean Outliers and Missing Data for Time Series
Cross Validation Operations (Rsample & Tune)
Resampling for time series cross validation using rsamples
-
time_series_split() - Simple Training/Test Set Splitting for Time Series
-
time_series_cv() - Time Series Cross Validation
Cross Validation Plan Visualization (Resample Sets)
Uses the output of time_series_cv or rsample::rolling_origin
-
plot_time_series_cv_plan() - Visualize a Time Series Resample Plan
-
tk_time_series_cv_plan() - Time Series Resample Plan Data Preparation
-
tk_index()has_timetk_idx() - Extract an index of date or datetime from time series objects, models, forecasts
-
tk_make_timeseries() - Intelligent date and date-time sequence creation
-
tk_make_future_timeseries() - Make future time series from existing
-
tk_make_holiday_sequence()tk_make_weekend_sequence()tk_make_weekday_sequence() - Make daily Holiday and Weekend date sequences
-
tk_get_timeseries_signature()tk_get_timeseries_summary() - Get date features from a time-series index
-
tk_get_holiday_signature()tk_get_holidays_by_year() - Get holiday features from a time-series index
-
tk_get_frequency()tk_get_trend() - Automatic frequency and trend calculation from a time series index
-
tk_get_timeseries_unit_frequency() - Get the timeseries unit frequency for the primary time scales
-
tk_get_timeseries_variables() - Get date or datetime variables (column names)
-
tk_summary_diagnostics() - Group-wise Time Series Summary
-
tk_anomaly_diagnostics() - Automatic group-wise Anomaly Detection by STL Decomposition
-
tk_acf_diagnostics() - Group-wise ACF, PACF, and CCF Data Preparation
-
tk_seasonal_diagnostics() - Group-wise Seasonality Data Preparation
-
tk_stl_diagnostics() - Group-wise STL Decomposition (Season, Trend, Remainder)
-
tk_tbl() - Coerce time-series objects to tibble.
-
tk_zooreg()tk_zooreg_() - Coerce time series objects and tibbles with date/date-time columns to ts.
Time Scale Template
The timescale template is used to automate frequency and trendcycle calculations.
-
set_tk_time_scale_template()get_tk_time_scale_template()tk_time_scale_template() - Get and modify the Time Scale Template
Time Series Datasets
Time series from various forecasting competitions. Domains include economic, retail, and web (google analytics)
-
m4_hourly - Sample of 4 Hourly Time Series Datasets from the M4 Competition
-
m4_daily - Sample of 4 Daily Time Series Datasets from the M4 Competition
-
m4_weekly - Sample of 4 Weekly Time Series Datasets from the M4 Competition
-
m4_monthly - Sample of 4 Monthly Time Series Datasets from the M4 Competition
-
m4_quarterly - Sample of 4 Quarterly Time Series Datasets from the M4 Competition
-
m4_yearly - Sample of 4 Yearly Time Series Datasets from the M4 Competition
-
walmart_sales_weekly - Sample Time Series Retail Data from the Walmart Recruiting Store Sales Forecasting Competition
-
wikipedia_traffic_daily - Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition
-
bike_sharing_daily - Daily Bike Sharing Data
-
taylor_30_min - Half-hourly electricity demand
-
FANG - Stock prices for the "FANG" stocks.
-
parse_date2()parse_datetime2() - Fast, flexible date and datetime parsing
-
is_date_class() - Check if an object is a date class
-
timetktimetk-package - timetk: Time Series Analysis in the Tidyverse