Function reference
-
plot_time_series()
- Interactive Plotting for One or More Time Series
-
plot_time_series_boxplot()
- Interactive Time Series Box Plots
-
plot_time_series_regression()
- Visualize a Time Series Linear Regression Formula
-
plot_acf_diagnostics()
- Visualize the ACF, PACF, and CCFs for One or More Time Series
-
plot_anomaly_diagnostics()
- Visualize Anomalies for One or More Time Series
-
plot_seasonal_diagnostics()
- Visualize Multiple Seasonality Features for One or More Time Series
-
plot_stl_diagnostics()
- Visualize STL Decomposition Features for One or More Time Series
-
summarise_by_time()
summarize_by_time()
- Summarise (for Time Series Data)
-
mutate_by_time()
- Mutate (for Time Series Data)
-
pad_by_time()
- Insert time series rows with regularly spaced timestamps
-
filter_by_time()
- Filter (for Time-Series Data)
-
filter_period()
- Apply filtering expressions inside periods (windows)
-
slice_period()
- Apply slice inside periods (windows)
-
condense_period()
- Convert the Period to a Lower Periodicity (e.g. Go from Daily to Monthly)
-
future_frame()
- Make future time series from existing
-
anomalize()
- Automatic group-wise Anomaly Detection
-
plot_anomalies()
plot_anomalies_decomp()
plot_anomalies_cleaned()
- Visualize Anomalies for One or More Time Series
-
slidify()
- Create a rolling (sliding) version of any function
-
between_time()
- Between (For Time Series): Range detection for date or date-time sequences
-
add_time()
subtract_time()
`%+time%`
`%-time%`
- Add / Subtract (For Time Series)
-
tk_tsfeatures()
- Time series feature matrix (Tidy)
Augment Operations (Quickly Add Many Features)
Add multiple columns to the original data. Respects dplyr
groups.
-
tk_augment_timeseries_signature()
- Add many time series features to the data
-
tk_augment_holiday_signature()
- Add many holiday features to the data
-
tk_augment_slidify()
- Add many rolling window calculations to the data
-
tk_augment_differences()
- Add many differenced columns to the data
-
tk_augment_lags()
tk_augment_leads()
- Add many lags to the data
-
tk_augment_fourier()
- Add many fourier series to the data
-
box_cox_vec()
box_cox_inv_vec()
auto_lambda()
- Box Cox Transformation
-
diff_vec()
diff_inv_vec()
- Differencing Transformation
-
lag_vec()
lead_vec()
- Lag Transformation
-
standardize_vec()
standardize_inv_vec()
- Standardize to Mean 0, Standard Deviation 1 (Center & Scale)
-
normalize_vec()
normalize_inv_vec()
- Normalize to Range (0, 1)
-
fourier_vec()
- Fourier Series
-
log_interval_vec()
log_interval_inv_vec()
- Log-Interval Transformation for Constrained Interval Forecasting
-
slidify_vec()
- Rolling Window Transformation
-
smooth_vec()
- Smoothing Transformation using Loess
-
ts_clean_vec()
- Replace Outliers & Missing Values in a Time Series
-
ts_impute_vec()
- Missing Value Imputation for Time Series
Feature Engineering Operations (Recipe Steps)
Preprocessing & feature engineering operations for use with recipes
and the tidymodels
ecosystem
-
step_timeseries_signature()
tidy(<step_timeseries_signature>)
- Time Series Feature (Signature) Generator
-
step_holiday_signature()
tidy(<step_holiday_signature>)
- Holiday Feature (Signature) Generator
-
step_fourier()
tidy(<step_fourier>)
- Fourier Features for Modeling Seasonality
Lags & Diffs
See recipes::step_lag()
for lagged features.
-
step_diff()
tidy(<step_diff>)
- Create a differenced predictor
-
step_smooth()
tidy(<step_smooth>)
- Smoothing Transformation using Loess
-
step_slidify()
tidy(<step_slidify>)
- Slidify Rolling Window Transformation
-
step_slidify_augment()
tidy(<step_slidify_augment>)
- Slidify Rolling Window Transformation (Augmented Version)
Variance Reduction
See recipes::step_log()
for log transformation.
-
step_box_cox()
tidy(<step_box_cox>)
- Box-Cox Transformation using Forecast Methods
-
step_log_interval()
tidy(<step_log_interval>)
- Log Interval Transformation for Constrained Interval Forecasting
-
step_ts_pad()
tidy(<step_ts_pad>)
- Pad: Add rows to fill gaps and go from low to high frequency
Imputation & Outlier Cleaning
See recipes::step_rollimpute()
for rolling imputation.
-
step_ts_impute()
tidy(<step_ts_impute>)
- Missing Data Imputation for Time Series
-
step_ts_clean()
tidy(<step_ts_clean>)
- Clean Outliers and Missing Data for Time Series
Cross Validation Operations (Rsample & Tune)
Resampling for time series cross validation using rsamples
-
time_series_split()
- Simple Training/Test Set Splitting for Time Series
-
time_series_cv()
- Time Series Cross Validation
Cross Validation Plan Visualization (Resample Sets)
Uses the output of time_series_cv
or rsample::rolling_origin
-
plot_time_series_cv_plan()
- Visualize a Time Series Resample Plan
-
tk_time_series_cv_plan()
- Time Series Resample Plan Data Preparation
-
tk_index()
has_timetk_idx()
- Extract an index of date or datetime from time series objects, models, forecasts
-
tk_make_timeseries()
- Intelligent date and date-time sequence creation
-
tk_make_future_timeseries()
- Make future time series from existing
-
tk_make_holiday_sequence()
tk_make_weekend_sequence()
tk_make_weekday_sequence()
- Make daily Holiday and Weekend date sequences
-
tk_get_timeseries_signature()
tk_get_timeseries_summary()
- Get date features from a time-series index
-
tk_get_holiday_signature()
tk_get_holidays_by_year()
- Get holiday features from a time-series index
-
tk_get_frequency()
tk_get_trend()
- Automatic frequency and trend calculation from a time series index
-
tk_get_timeseries_unit_frequency()
- Get the timeseries unit frequency for the primary time scales
-
tk_get_timeseries_variables()
- Get date or datetime variables (column names)
-
tk_summary_diagnostics()
- Group-wise Time Series Summary
-
tk_anomaly_diagnostics()
- Automatic group-wise Anomaly Detection by STL Decomposition
-
tk_acf_diagnostics()
- Group-wise ACF, PACF, and CCF Data Preparation
-
tk_seasonal_diagnostics()
- Group-wise Seasonality Data Preparation
-
tk_stl_diagnostics()
- Group-wise STL Decomposition (Season, Trend, Remainder)
-
tk_tbl()
- Coerce time-series objects to tibble.
-
tk_zooreg()
tk_zooreg_()
- Coerce time series objects and tibbles with date/date-time columns to ts.
Time Scale Template
The timescale template is used to automate frequency and trendcycle calculations.
-
set_tk_time_scale_template()
get_tk_time_scale_template()
tk_time_scale_template()
- Get and modify the Time Scale Template
Time Series Datasets
Time series from various forecasting competitions. Domains include economic, retail, and web (google analytics)
-
m4_hourly
- Sample of 4 Hourly Time Series Datasets from the M4 Competition
-
m4_daily
- Sample of 4 Daily Time Series Datasets from the M4 Competition
-
m4_weekly
- Sample of 4 Weekly Time Series Datasets from the M4 Competition
-
m4_monthly
- Sample of 4 Monthly Time Series Datasets from the M4 Competition
-
m4_quarterly
- Sample of 4 Quarterly Time Series Datasets from the M4 Competition
-
m4_yearly
- Sample of 4 Yearly Time Series Datasets from the M4 Competition
-
walmart_sales_weekly
- Sample Time Series Retail Data from the Walmart Recruiting Store Sales Forecasting Competition
-
wikipedia_traffic_daily
- Sample Daily Time Series Data from the Web Traffic Forecasting (Wikipedia) Competition
-
bike_sharing_daily
- Daily Bike Sharing Data
-
taylor_30_min
- Half-hourly electricity demand
-
FANG
- Stock prices for the "FANG" stocks.
-
parse_date2()
parse_datetime2()
- Fast, flexible date and datetime parsing
-
is_date_class()
- Check if an object is a date class
-
timetk
timetk-package
- timetk: Time Series Analysis in the Tidyverse