step_fourier
creates a a specification of a recipe
step that will convert a Date or Date-time column into a Fourier
series
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
A single column with class
Date
orPOSIXct
. Seerecipes::selections()
for more details. For thetidy
method, these are not currently used.- period
The numeric period for the oscillation frequency. See details for examples of
period
specification.- K
The number of orders to include for each sine/cosine fourier series. More orders increase the number of fourier terms and therefore the variance of the fitted model at the expense of bias. See details for examples of
K
specification.- role
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new variable columns created by the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- columns
A character string of variables that will be used as inputs. This field is a placeholder and will be populated once
recipes::prep()
is used.- scale_factor
A factor for scaling the numeric index extracted from the date or date-time feature. This is a placeholder and will be populated once
recipes::prep()
is used.- skip
A logical. Should the step be skipped when the recipe is baked by bake.recipe()? While all operations are baked when prep.recipe() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.
- id
A character string that is unique to this step to identify it.
- x
A
step_fourier
object.
Value
For step_fourier
, an updated version of recipe with
the new step added to the sequence of existing steps (if any).
For the tidy
method, a tibble with columns terms
(the selectors or variables selected), value
(the feature
names).
Details
Date Variable
Unlike other steps, step_fourier
does not
remove the original date variables. recipes::step_rm()
can be
used for this purpose.
Period Specification
The period
argument is used to generate the distance between peaks
in the fourier sequence. The key is to line up the peaks with unique
seasonalities in the data.
For Daily Data, typical period specifications are:
Yearly frequency is 365
Quarterly frequency is 365 / 4 = 91.25
Monthly frequency is 365 / 12 = 30.42
K Specification
The K
argument specifies the maximum number of orders of Fourier terms.
Examples:
Specifying
period = 365
andK = 1
will return acos365_K1
andsin365_K1
fourier seriesSpecifying
period = 365
andK = 2
will return acos365_K1
,cos365_K2
,sin365_K1
andsin365_K2
sequence, which tends to increase the models ability to fit vs theK = 1
specification (at the expense of possibly overfitting).
Multiple values of period
and K
It's possible to specify multiple values of period
in a single
step such as step_fourier(period = c(91.25, 365), K = 2
.
This returns 8 Fouriers series:
cos91.25_K1
,sin91.25_K1
,cos91.25_K2
,sin91.25_K2
cos365_K1
,sin365_K1
,cos365_K2
,sin365_K2
See also
Time Series Analysis:
Engineered Features:
step_timeseries_signature()
,step_holiday_signature()
,step_fourier()
Diffs & Lags
step_diff()
,recipes::step_lag()
Smoothing:
step_slidify()
,step_smooth()
Variance Reduction:
step_box_cox()
Imputation:
step_ts_impute()
,step_ts_clean()
Padding:
step_ts_pad()
Main Recipe Functions:
Examples
library(recipes)
library(dplyr)
FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)
# Create a recipe object with a timeseries signature step
# - 252 Trade days per year
# - period = c(252/4, 252): Adds quarterly and yearly fourier series
# - K = 2: Adds 1st and 2nd fourier orders
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_fourier(date, period = c(252/4, 252), K = 2)
# View the recipe object
rec_obj
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 2
#>
#> ── Operations
#> • Fourier series features from: date
# Prepare the recipe object
prep(rec_obj)
#>
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> outcome: 1
#> predictor: 2
#>
#> ── Training information
#> Training data contained 1008 data points and no incomplete rows.
#>
#> ── Operations
#> • Fourier series features from: date | Trained
# Bake the recipe object - Adds the Fourier Series
bake(prep(rec_obj), FB_tbl)
#> # A tibble: 1,008 × 11
#> symbol date adjusted date_sin63_K1 date_cos63_K1 date_sin63_K2
#> <fct> <date> <dbl> <dbl> <dbl> <dbl>
#> 1 FB 2013-01-02 28 0.912 -0.411 -0.750
#> 2 FB 2013-01-03 27.8 0.866 -0.500 -0.866
#> 3 FB 2013-01-04 28.8 0.812 -0.584 -0.948
#> 4 FB 2013-01-07 29.4 0.604 -0.797 -0.963
#> 5 FB 2013-01-08 29.1 0.521 -0.853 -0.890
#> 6 FB 2013-01-09 30.6 0.434 -0.901 -0.782
#> 7 FB 2013-01-10 31.3 0.342 -0.940 -0.643
#> 8 FB 2013-01-11 31.7 0.247 -0.969 -0.478
#> 9 FB 2013-01-14 31.0 -0.0498 -0.999 0.0996
#> 10 FB 2013-01-15 30.1 -0.149 -0.989 0.295
#> # ℹ 998 more rows
#> # ℹ 5 more variables: date_cos63_K2 <dbl>, date_sin252_K1 <dbl>,
#> # date_cos252_K1 <dbl>, date_sin252_K2 <dbl>, date_cos252_K2 <dbl>
# Tidy shows which features have been added during the 1st step
# in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
#> # A tibble: 1 × 6
#> number operation type trained skip id
#> <int> <chr> <chr> <lgl> <lgl> <chr>
#> 1 1 step fourier TRUE FALSE fourier_5OVZB
tidy(prep(rec_obj), number = 1)
#> # A tibble: 8 × 5
#> terms type K period id
#> <chr> <chr> <int> <dbl> <chr>
#> 1 date_sin63_K1 sin 1 63 fourier_5OVZB
#> 2 date_cos63_K1 cos 1 63 fourier_5OVZB
#> 3 date_sin63_K2 sin 2 63 fourier_5OVZB
#> 4 date_cos63_K2 cos 2 63 fourier_5OVZB
#> 5 date_sin252_K1 sin 1 252 fourier_5OVZB
#> 6 date_cos252_K1 cos 1 252 fourier_5OVZB
#> 7 date_sin252_K2 sin 2 252 fourier_5OVZB
#> 8 date_cos252_K2 cos 2 252 fourier_5OVZB