Automatic group-wise Anomaly Detection by STL Decomposition
Source:R/diagnostics-tk_anomaly_diagnostics.R
tk_anomaly_diagnostics.Rd
tk_anomaly_diagnostics()
is the preprocessor for plot_anomaly_diagnostics()
.
It performs automatic anomaly detection for one or more time series groups.
Usage
tk_anomaly_diagnostics(
.data,
.date_var,
.value,
.frequency = "auto",
.trend = "auto",
.alpha = 0.05,
.max_anomalies = 0.2,
.message = TRUE
)
Arguments
- .data
A
tibble
ordata.frame
with a time-based column- .date_var
A column containing either date or date-time values
- .value
A column containing numeric values
- .frequency
Controls the seasonal adjustment (removal of seasonality). Input can be either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of observations per frequency (e.g. 10). Refer to
tk_get_frequency()
.- .trend
Controls the trend component. For STL, trend controls the sensitivity of the LOESS smoother, which is used to remove the remainder. Refer to
tk_get_trend()
.- .alpha
Controls the width of the "normal" range. Lower values are more conservative while higher values are less prone to incorrectly classifying "normal" observations.
- .max_anomalies
The maximum percent of anomalies permitted to be identified.
- .message
A boolean. If
TRUE
, will output information related to automatic frequency and trend selection (if applicable).
Value
A tibble
or data.frame
with STL Decomposition Features
(observed, season, trend, remainder, seasadj) and
Anomaly Features (remainder_l1, remainder_l2, anomaly, recomposed_l1, and recomposed_l2)
Details
The tk_anomaly_diagnostics()
method for anomaly detection that implements a 2-step process to
detect outliers in time series.
Step 1: Detrend & Remove Seasonality using STL Decomposition
The decomposition separates the "season" and "trend" components from the "observed" values leaving the "remainder" for anomaly detection.
The user can control two parameters: frequency and trend.
.frequency
: Adjusts the "season" component that is removed from the "observed" values..trend
: Adjusts the trend window (t.window parameter fromstats::stl()
that is used.
The user may supply both .frequency
and .trend
as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on
the scale of the time series using the tk_time_scale_template()
.
Step 2: Anomaly Detection
Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "remainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are determined.
The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.
IQR Adjustment, alpha parameter
With the default alpha = 0.05
, the limits are established by expanding
the 25/75 baseline by an IQR Factor of 3 (3X).
The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):
To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more difficult to be an outlier.
Increase alpha to make it easier to be an outlier.
The IQR outlier detection method is used in
forecast::tsoutliers()
.A similar outlier detection method is used by Twitter's
AnomalyDetection
package.Both Twitter and Forecast tsoutliers methods have been implemented in Business Science's
anomalize
package.
References
CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol. 6, No. 1 (1990), pp. 3-73.
Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for Long-Term Anomaly Detection in the Cloud. Twitter Inc.
See also
plot_anomaly_diagnostics()
: Visual anomaly detection
Examples
library(dplyr)
walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
tk_anomaly_diagnostics(Date, Weekly_Sales)
#> frequency = 13 observations per 1 quarter
#> trend = 52 observations per 1 year
#> frequency = 13 observations per 1 quarter
#> trend = 52 observations per 1 year
#> # A tibble: 286 × 12
#> # Groups: id [2]
#> id Date observed season trend remainder seasadj remainder_l1
#> <fct> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1_1 2010-02-05 24924. 874. 19967. 4083. 24050. -15981.
#> 2 1_1 2010-02-12 46039. -698. 19835. 26902. 46737. -15981.
#> 3 1_1 2010-02-19 41596. -1216. 19703. 23108. 42812. -15981.
#> 4 1_1 2010-02-26 19404. -821. 19571. 653. 20224. -15981.
#> 5 1_1 2010-03-05 21828. 324. 19439. 2064. 21504. -15981.
#> 6 1_1 2010-03-12 21043. 471. 19307. 1265. 20572. -15981.
#> 7 1_1 2010-03-19 22137. 920. 19175. 2041. 21217. -15981.
#> 8 1_1 2010-03-26 26229. 752. 19069. 6409. 25478. -15981.
#> 9 1_1 2010-04-02 57258. 503. 18962. 37794. 56755. -15981.
#> 10 1_1 2010-04-09 42961. 1132. 18855. 22974. 41829. -15981.
#> # ℹ 276 more rows
#> # ℹ 4 more variables: remainder_l2 <dbl>, anomaly <chr>, recomposed_l1 <dbl>,
#> # recomposed_l2 <dbl>