vignettes/TK04_Plotting_Time_Series.Rmd
TK04_Plotting_Time_Series.Rmdtimetk: A toolkit for time series analysis in the tidyverse

This tutorial focuses on, plot_time_series(), a workhorse time-series plotting function that:
plotly plots (great for exploring & shiny apps)ggplot2 & plotly codeplotly to static ggplot2 plotslibrary(tidyverse) library(lubridate) library(timetk) # Setup for the plotly charts (# FALSE returns ggplots) interactive <- TRUE
Let’s start with a popular time series, taylor_30_min, which includes energy demand in megawatts at a sampling interval of 30-minutes. This is a single time series.
taylor_30_min #> # A tibble: 4,032 x 2 #> date value #> <dttm> <dbl> #> 1 2000-06-05 00:00:00 22262 #> 2 2000-06-05 00:30:00 21756 #> 3 2000-06-05 01:00:00 22247 #> 4 2000-06-05 01:30:00 22759 #> 5 2000-06-05 02:00:00 22549 #> 6 2000-06-05 02:30:00 22313 #> 7 2000-06-05 03:00:00 22128 #> 8 2000-06-05 03:30:00 21860 #> 9 2000-06-05 04:00:00 21751 #> 10 2000-06-05 04:30:00 21336 #> # … with 4,022 more rows
The plot_time_series() function generates an interactive plotly chart by default.
.date_var) and the numeric variable (.value) that changes over time as the first 2 arguments.interactive = TRUE, the .plotly_slider = TRUE adds a date slider to the bottom of the chart.taylor_30_min %>% plot_time_series(date, value, .interactive = interactive, .plotly_slider = TRUE)
Next, let’s move on to a dataset with time series groups, m4_daily, which is a sample of 4 time series from the M4 competition that are sampled at a daily frequency.
m4_daily %>% group_by(id) #> # A tibble: 9,743 x 3 #> # Groups: id [4] #> id date value #> <fct> <date> <dbl> #> 1 D10 2014-07-03 2076. #> 2 D10 2014-07-04 2073. #> 3 D10 2014-07-05 2049. #> 4 D10 2014-07-06 2049. #> 5 D10 2014-07-07 2006. #> 6 D10 2014-07-08 2018. #> 7 D10 2014-07-09 2019. #> 8 D10 2014-07-10 2007. #> 9 D10 2014-07-11 2010 #> 10 D10 2014-07-12 2002. #> # … with 9,733 more rows
Visualizing grouped data is as simple as grouping the data set with group_by() prior to piping into the plot_time_series() function. Key points:
group_by() or by using the ... to add groups..facet_ncol = 2 returns a 2-column faceted plot.facet_scales = "free" allows the x and y-axis of each plot to scale independently of the other plotsm4_daily %>% group_by(id) %>% plot_time_series(date, value, .facet_ncol = 2, .facet_scales = "free", .interactive = interactive)
Let’s switch to an hourly dataset with multiple groups. We can showcase:
.value
.color_var to highlight sub-groups.m4_hourly %>% group_by(id) #> # A tibble: 3,060 x 3 #> # Groups: id [4] #> id date value #> <fct> <dttm> <dbl> #> 1 H10 2015-07-01 12:00:00 513 #> 2 H10 2015-07-01 13:00:00 512 #> 3 H10 2015-07-01 14:00:00 506 #> 4 H10 2015-07-01 15:00:00 500 #> 5 H10 2015-07-01 16:00:00 490 #> 6 H10 2015-07-01 17:00:00 484 #> 7 H10 2015-07-01 18:00:00 467 #> 8 H10 2015-07-01 19:00:00 446 #> 9 H10 2015-07-01 20:00:00 434 #> 10 H10 2015-07-01 21:00:00 422 #> # … with 3,050 more rows
The intent is to showcase the groups in faceted plots, but to highlight weekly windows (sub-groups) within the data while simultaneously doing a log() transformation to the value. This is simple to do:
.value = log(value) Applies the Log Transformation.color_var = week(date) The date column is transformed to a lubridate::week() number. The color is applied to each of the week numbers.m4_hourly %>% group_by(id) %>% plot_time_series(date, log(value), # Apply a Log Transformation .color_var = week(date), # Color applied to Week transformation # Facet formatting .facet_ncol = 2, .facet_scales = "free", .interactive = interactive)
All of the visualizations can be converted from interactive plotly (great for exploring and shiny apps) to static ggplot2 visualizations (great for reports).
taylor_30_min %>% plot_time_series(date, value, .color_var = month(date, label = TRUE), # Returns static ggplot .interactive = FALSE, # Customization .title = "Taylor's MegaWatt Data", .x_lab = "Date (30-min intervals)", .y_lab = "Energy Demand (MW)", .color_lab = "Month") + scale_y_continuous(labels = scales::comma_format())

My Talk on High-Performance Time Series Forecasting
Time series is changing. Businesses now need 10,000+ time series forecasts every day.
High-Performance Forecasting Systems will save companies MILLIONS of dollars. Imagine what will happen to your career if you can provide your organization a “High-Performance Time Series Forecasting System” (HPTSF System).
I teach how to build a HPTFS System in my High-Performance Time Series Forecasting Course. If interested in learning Scalable High-Performance Forecasting Strategies then take my course. You will learn:
Modeltime - 30+ Models (Prophet, ARIMA, XGBoost, Random Forest, & many more)GluonTS (Competition Winners)