Group-wise Time Series Summary
Source:R/diagnostics-tk_summary_diagnostics.R
tk_summary_diagnostics.Rd
tk_summary_diagnostics()
returns the time series summary from
one or more timeseries groups in a tibble.
Arguments
- .data
A
tibble
ordata.frame
with a time-based column- .date_var
A column containing either date or date-time values. If missing, attempts to auto-detect the date or date-time column.
Details
Applies tk_get_timeseries_summary()
group-wise returning the summary of one or more
time series groups.
Respects
dplyr
groupsReturns the time series summary from a time-based feature.
Examples
library(dplyr)
# ---- NON-GROUPED EXAMPLES ----
# Monthly Data
m4_monthly %>%
filter(id == "M750") %>%
tk_summary_diagnostics()
#> tk_augment_timeseries_signature(): Using the following .date_var variable: date
#> # A tibble: 1 × 12
#> n.obs start end units scale tzone diff.minimum diff.q1 diff.median
#> <int> <date> <date> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 306 1990-01-01 2015-06-01 days month UTC 2419200 2592000 2678400
#> # ℹ 3 more variables: diff.mean <dbl>, diff.q3 <dbl>, diff.maximum <dbl>
# ---- GROUPED EXAMPLES ----
# Monthly Data
m4_monthly %>%
group_by(id) %>%
tk_summary_diagnostics()
#> tk_augment_timeseries_signature(): Using the following .date_var variable: date
#> # A tibble: 4 × 13
#> # Groups: id [4]
#> id n.obs start end units scale tzone diff.minimum diff.q1
#> <fct> <int> <date> <date> <chr> <chr> <chr> <dbl> <dbl>
#> 1 M1 469 1976-06-01 2015-06-01 days month UTC 2419200 2592000
#> 2 M2 469 1976-06-01 2015-06-01 days month UTC 2419200 2592000
#> 3 M750 306 1990-01-01 2015-06-01 days month UTC 2419200 2592000
#> 4 M1000 330 1988-01-01 2015-06-01 days month UTC 2419200 2592000
#> # ℹ 4 more variables: diff.median <dbl>, diff.mean <dbl>, diff.q3 <dbl>,
#> # diff.maximum <dbl>