
Package index
-
modeltime_table()as_modeltime_table() - Scale forecast analysis with a Modeltime Table
-
modeltime_calibrate() - Preparation for forecasting
-
modeltime_forecast() - Forecast future data
-
modeltime_accuracy() - Calculate Accuracy Metrics
-
modeltime_refit() - Refit one or more trained models to new data
-
modeltime_fit_workflowset() - Fit a
workflowsetobject to one or multiple time series
-
recursive() - Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model
-
panel_tail() - Filter the last N rows (Tail) for multiple time series
-
plot_modeltime_forecast() - Interactive Forecast Visualization
-
plot_modeltime_residuals() - Interactive Residuals Visualization
-
table_modeltime_accuracy() - Interactive Accuracy Tables
-
modeltime_residuals() - Extract Residuals Information
-
modeltime_residuals_test() - Apply Statistical Tests to Residuals
-
plot_modeltime_residuals() - Interactive Residuals Visualization
Nested Forecasting
Forecast many time series iteratively using “nested modeltime tables”. Used to apply models to each time series panel independently.
-
modeltime_nested_fit() - Fit Tidymodels Workflows to Nested Time Series
-
modeltime_nested_select_best() - Select the Best Models from Nested Modeltime Table
-
modeltime_nested_refit() - Refits a Nested Modeltime Table
-
modeltime_nested_forecast() - Modeltime Nested Forecast
-
extract_nested_test_accuracy()extract_nested_test_forecast()extract_nested_error_report()extract_nested_best_model_report()extract_nested_future_forecast()extract_nested_modeltime_table()extract_nested_train_split()extract_nested_test_split() - Log Extractor Functions for Modeltime Nested Tables
-
extend_timeseries()nest_timeseries()split_nested_timeseries() - Prepared Nested Modeltime Data
-
prophet_reg() - General Interface for PROPHET Time Series Models
-
prophet_boost() - General Interface for Boosted PROPHET Time Series Models
-
arima_reg() - General Interface for ARIMA Regression Models
-
arima_boost() - General Interface for "Boosted" ARIMA Regression Models
-
exp_smoothing() - General Interface for Exponential Smoothing State Space Models
-
seasonal_reg() - General Interface for Multiple Seasonality Regression Models (TBATS, STLM)
-
nnetar_reg() - General Interface for NNETAR Regression Models
Additional Algorithms
These algorithms have additional dependencies that can be installed with dependencies = TRUE
-
adam_reg() - General Interface for ADAM Regression Models
-
temporal_hierarchy() - General Interface for Temporal Hierarchical Forecasting (THIEF) Models
-
window_reg() - General Interface for Window Forecast Models
-
naive_reg() - General Interface for NAIVE Forecast Models
-
parallel_start()parallel_stop() - Start parallel clusters / plans
-
control_refit()control_fit_workflowset()control_nested_fit()control_nested_refit()control_nested_forecast() - Control aspects of the training process
-
create_model_grid() - Helper to make
parsnipmodel specs from adialsparameter grid
-
combine_modeltime_tables() - Combine multiple Modeltime Tables into a single Modeltime Table
-
add_modeltime_model() - Add a Model into a Modeltime Table
-
drop_modeltime_model() - Drop a Model from a Modeltime Table
-
update_modeltime_model() - Update the model by model id in a Modeltime Table
-
update_model_description()update_modeltime_description() - Update the model description by model id in a Modeltime Table
-
pluck_modeltime_model()pull_modeltime_model() - Extract model by model id in a Modeltime Table
-
pull_modeltime_residuals() - Extracts modeltime residuals data from a Modeltime Model
-
pull_parsnip_preprocessor() - Pulls the Formula from a Fitted Parsnip Model Object
-
default_forecast_accuracy_metric_set()extended_forecast_accuracy_metric_set() - Forecast Accuracy Metrics Sets
-
summarize_accuracy_metrics() - Summarize Accuracy Metrics
-
maape() - Mean Arctangent Absolute Percentage Error
-
maape_vec() - Mean Arctangent Absolute Percentage Error
-
seasonal_period() - Tuning Parameters for Time Series (ts-class) Models
-
non_seasonal_ar()non_seasonal_differences()non_seasonal_ma()seasonal_ar()seasonal_differences()seasonal_ma() - Tuning Parameters for ARIMA Models
-
error()trend()trend_smooth()season()damping()damping_smooth()smooth_level()smooth_trend()smooth_seasonal() - Tuning Parameters for Exponential Smoothing Models
-
growth()changepoint_num()changepoint_range()seasonality_yearly()seasonality_weekly()seasonality_daily()prior_scale_changepoints()prior_scale_seasonality()prior_scale_holidays() - Tuning Parameters for Prophet Models
-
num_networks() - Tuning Parameters for NNETAR Models
-
ets_model()loss()use_constant()regressors_treatment()outliers_treatment()probability_model()distribution()information_criteria()select_order() - Tuning Parameters for ADAM Models
-
combination_method()use_model() - Tuning Parameters for TEMPORAL HIERARCHICAL Models
-
new_modeltime_bridge() - Constructor for creating modeltime models
-
create_xreg_recipe() - Developer Tools for preparing XREGS (Regressors)
-
juice_xreg_recipe()bake_xreg_recipe() - Developer Tools for processing XREGS (Regressors)
-
parse_index_from_data()parse_period_from_index() - Developer Tools for parsing date and date-time information
-
get_model_description() - Get model descriptions for parsnip, workflows & modeltime objects
-
get_arima_description() - Get model descriptions for Arima objects
-
get_tbats_description() - Get model descriptions for TBATS objects
-
m750 - The 750th Monthly Time Series used in the M4 Competition
-
m750_models - Three (3) Models trained on the M750 Data (Training Set)
-
m750_splits - The results of train/test splitting the M750 Data
-
m750_training_resamples - The Time Series Cross Validation Resamples the M750 Data (Training Set)