Package index
-
modeltime_table()
as_modeltime_table()
- Scale forecast analysis with a Modeltime Table
-
modeltime_calibrate()
- Preparation for forecasting
-
modeltime_forecast()
- Forecast future data
-
modeltime_accuracy()
- Calculate Accuracy Metrics
-
modeltime_refit()
- Refit one or more trained models to new data
-
modeltime_fit_workflowset()
- Fit a
workflowset
object to one or multiple time series
-
recursive()
- Create a Recursive Time Series Model from a Parsnip or Workflow Regression Model
-
panel_tail()
- Filter the last N rows (Tail) for multiple time series
-
plot_modeltime_forecast()
- Interactive Forecast Visualization
-
plot_modeltime_residuals()
- Interactive Residuals Visualization
-
table_modeltime_accuracy()
- Interactive Accuracy Tables
-
modeltime_residuals()
- Extract Residuals Information
-
modeltime_residuals_test()
- Apply Statistical Tests to Residuals
-
plot_modeltime_residuals()
- Interactive Residuals Visualization
Nested Forecasting
Forecast many time series iteratively using “nested modeltime tables”. Used to apply models to each time series panel independently.
-
modeltime_nested_fit()
- Fit Tidymodels Workflows to Nested Time Series
-
modeltime_nested_select_best()
- Select the Best Models from Nested Modeltime Table
-
modeltime_nested_refit()
- Refits a Nested Modeltime Table
-
modeltime_nested_forecast()
- Modeltime Nested Forecast
-
extract_nested_test_accuracy()
extract_nested_test_forecast()
extract_nested_error_report()
extract_nested_best_model_report()
extract_nested_future_forecast()
extract_nested_modeltime_table()
extract_nested_train_split()
extract_nested_test_split()
- Log Extractor Functions for Modeltime Nested Tables
-
extend_timeseries()
nest_timeseries()
split_nested_timeseries()
- Prepared Nested Modeltime Data
-
prophet_reg()
- General Interface for PROPHET Time Series Models
-
prophet_boost()
- General Interface for Boosted PROPHET Time Series Models
-
arima_reg()
- General Interface for ARIMA Regression Models
-
arima_boost()
- General Interface for "Boosted" ARIMA Regression Models
-
exp_smoothing()
- General Interface for Exponential Smoothing State Space Models
-
seasonal_reg()
- General Interface for Multiple Seasonality Regression Models (TBATS, STLM)
-
nnetar_reg()
- General Interface for NNETAR Regression Models
Additional Algorithms
These algorithms have additional dependencies that can be installed with dependencies = TRUE
-
adam_reg()
- General Interface for ADAM Regression Models
-
temporal_hierarchy()
- General Interface for Temporal Hierarchical Forecasting (THIEF) Models
-
window_reg()
- General Interface for Window Forecast Models
-
naive_reg()
- General Interface for NAIVE Forecast Models
-
parallel_start()
parallel_stop()
- Start parallel clusters using
parallel
package
-
control_refit()
control_fit_workflowset()
control_nested_fit()
control_nested_refit()
control_nested_forecast()
- Control aspects of the training process
-
create_model_grid()
- Helper to make
parsnip
model specs from adials
parameter grid
-
combine_modeltime_tables()
- Combine multiple Modeltime Tables into a single Modeltime Table
-
add_modeltime_model()
- Add a Model into a Modeltime Table
-
drop_modeltime_model()
- Drop a Model from a Modeltime Table
-
update_modeltime_model()
- Update the model by model id in a Modeltime Table
-
update_model_description()
update_modeltime_description()
- Update the model description by model id in a Modeltime Table
-
pluck_modeltime_model()
pull_modeltime_model()
- Extract model by model id in a Modeltime Table
-
pull_modeltime_residuals()
- Extracts modeltime residuals data from a Modeltime Model
-
pull_parsnip_preprocessor()
- Pulls the Formula from a Fitted Parsnip Model Object
-
default_forecast_accuracy_metric_set()
extended_forecast_accuracy_metric_set()
- Forecast Accuracy Metrics Sets
-
summarize_accuracy_metrics()
- Summarize Accuracy Metrics
-
maape()
- Mean Arctangent Absolute Percentage Error
-
maape_vec()
- Mean Arctangent Absolute Percentage Error
-
seasonal_period()
- Tuning Parameters for Time Series (ts-class) Models
-
non_seasonal_ar()
non_seasonal_differences()
non_seasonal_ma()
seasonal_ar()
seasonal_differences()
seasonal_ma()
- Tuning Parameters for ARIMA Models
-
error()
trend()
trend_smooth()
season()
damping()
damping_smooth()
smooth_level()
smooth_trend()
smooth_seasonal()
- Tuning Parameters for Exponential Smoothing Models
-
growth()
changepoint_num()
changepoint_range()
seasonality_yearly()
seasonality_weekly()
seasonality_daily()
prior_scale_changepoints()
prior_scale_seasonality()
prior_scale_holidays()
- Tuning Parameters for Prophet Models
-
num_networks()
- Tuning Parameters for NNETAR Models
-
ets_model()
loss()
use_constant()
regressors_treatment()
outliers_treatment()
probability_model()
distribution()
information_criteria()
select_order()
- Tuning Parameters for ADAM Models
-
combination_method()
use_model()
- Tuning Parameters for TEMPORAL HIERARCHICAL Models
-
new_modeltime_bridge()
- Constructor for creating modeltime models
-
create_xreg_recipe()
- Developer Tools for preparing XREGS (Regressors)
-
juice_xreg_recipe()
bake_xreg_recipe()
- Developer Tools for processing XREGS (Regressors)
-
parse_index_from_data()
parse_period_from_index()
- Developer Tools for parsing date and date-time information
-
get_model_description()
- Get model descriptions for parsnip, workflows & modeltime objects
-
get_arima_description()
- Get model descriptions for Arima objects
-
get_tbats_description()
- Get model descriptions for TBATS objects
-
m750
- The 750th Monthly Time Series used in the M4 Competition
-
m750_models
- Three (3) Models trained on the M750 Data (Training Set)
-
m750_splits
- The results of train/test splitting the M750 Data
-
m750_training_resamples
- The Time Series Cross Validation Resamples the M750 Data (Training Set)