This is a convenience function to unnest model residuals
Arguments
- object
A Modeltime Table
- new_data
A
tibble
to predict and calculate residuals on. If provided, overrides any calibration data.- quiet
Hide errors (
TRUE
, the default), or display them as they occur?- ...
Not currently used.
Examples
library(tidyverse)
library(lubridate)
library(timetk)
library(parsnip)
library(rsample)
# Data
m750 <- m4_monthly %>% filter(id == "M750")
# Split Data 80/20
splits <- initial_time_split(m750, prop = 0.9)
# --- MODELS ---
# Model 1: prophet ----
model_fit_prophet <- prophet_reg() %>%
set_engine(engine = "prophet") %>%
fit(value ~ date, data = training(splits))
#> Disabling weekly seasonality. Run prophet with weekly.seasonality=TRUE to override this.
#> Disabling daily seasonality. Run prophet with daily.seasonality=TRUE to override this.
# ---- MODELTIME TABLE ----
models_tbl <- modeltime_table(
model_fit_prophet
)
# ---- RESIDUALS ----
# In-Sample
models_tbl %>%
modeltime_calibrate(new_data = training(splits)) %>%
modeltime_residuals() %>%
plot_modeltime_residuals(.interactive = FALSE)
# Out-of-Sample
models_tbl %>%
modeltime_calibrate(new_data = testing(splits)) %>%
modeltime_residuals() %>%
plot_modeltime_residuals(.interactive = FALSE)