Skip to contents

These functions are matched to the associated training functions:

Usage

control_refit(verbose = FALSE, allow_par = FALSE, cores = -1, packages = NULL)

control_fit_workflowset(
  verbose = FALSE,
  allow_par = FALSE,
  cores = -1,
  packages = NULL
)

control_nested_fit(
  verbose = FALSE,
  allow_par = FALSE,
  cores = -1,
  packages = NULL
)

control_nested_refit(
  verbose = FALSE,
  allow_par = FALSE,
  cores = -1,
  packages = NULL
)

control_nested_forecast(
  verbose = FALSE,
  allow_par = FALSE,
  cores = -1,
  packages = NULL
)

Arguments

verbose

Logical to control printing.

allow_par

Logical to allow parallel computation. Default: FALSE (single threaded).

cores

Number of cores for computation. If -1, uses all available physical cores. Default: -1.

packages

An optional character string of additional R package names that should be loaded during parallel processing.

  • Packages in your namespace are loaded by default

  • Key Packages are loaded by default: tidymodels, parsnip, modeltime, dplyr, stats, lubridate and timetk.

Value

A List with the control settings.

See also

  • Setting Up Parallel Processing: parallel_start(), [parallel_stop())]

  • Training Functions: [modeltime_refit()], [modeltime_fit_workflowset()], [modeltime_nested_fit()], [modeltime_nested_refit()]

[parallel_stop())]: R:parallel_stop()) [modeltime_refit()]: R:modeltime_refit() [modeltime_fit_workflowset()]: R:modeltime_fit_workflowset() [modeltime_nested_fit()]: R:modeltime_nested_fit() [modeltime_nested_refit()]: R:modeltime_nested_refit()

Examples


# No parallel processing by default
control_refit()
#> refit control object
#> --------------------
#> allow_par : FALSE 
#> cores     : 1 
#> verbose   : FALSE 

# Allow parallel processing
control_refit(allow_par = TRUE)
#> refit control object
#> --------------------
#> allow_par : TRUE 
#> cores     : 2 
#> verbose   : FALSE 
#> packages  : modeltime parsnip workflows dplyr stats lubridate tidymodels timetk rsample recipes yardstick dials tune forcats stringr readr tidyverse workflowsets tidyr tibble purrr modeldata infer ggplot2 scales broom graphics grDevices utils datasets methods base 

# Set verbosity to show additional training information
control_refit(verbose = TRUE)
#> refit control object
#> --------------------
#> allow_par : FALSE 
#> cores     : 1 
#> verbose   : TRUE 

# Add additional packages used during modeling in parallel processing
# - This is useful if your namespace does not load all needed packages
#   to run models.
# - An example is if I use `temporal_hierarchy()`, which depends on the `thief` package
control_refit(allow_par = TRUE, packages = "thief")
#> refit control object
#> --------------------
#> allow_par : TRUE 
#> cores     : 2 
#> verbose   : FALSE 
#> packages  : modeltime parsnip workflows dplyr stats lubridate tidymodels timetk rsample recipes yardstick dials tune forcats stringr readr tidyverse workflowsets tidyr tibble purrr modeldata infer ggplot2 scales broom graphics grDevices utils datasets methods base thief