Adds leads to a Pandas DataFrame or DataFrameGroupBy object.
The augment_leads function takes a Pandas DataFrame or GroupBy object, a date column, a value column or list of value columns, and a lag or list of lags, and adds lagged versions of the value columns to the DataFrame.
Parameters
Name
Type
Description
Default
data
pd.DataFrame or pd.core.groupby.generic.DataFrameGroupBy
The data parameter is the input DataFrame or DataFrameGroupBy object that you want to add lagged columns to.
required
date_column
str
The date_column parameter is a string that specifies the name of the column in the DataFrame that contains the dates. This column will be used to sort the data before adding the lagged values.
required
value_column
str or list
The value_column parameter is the column(s) in the DataFrame that you want to add lagged values for. It can be either a single column name (string) or a list of column names.
required
leads
int or tuple or list
The leads parameter is an integer, tuple, or list that specifies the number of lead values to add to the DataFrame. - If it is an integer, the function will add that number of lead values for each column specified in the value_column parameter. - If it is a tuple, it will generate leads from the first to the second value (inclusive). - If it is a list, it will generate leads based on the values in the list.
1
reduce_memory
bool
The reduce_memory parameter is used to specify whether to reduce the memory usage of the DataFrame by converting int, float to smaller bytes and str to categorical data. This reduces memory for large data but may impact resolution of float and will change str to categorical. Default is False.
False
engine
str
The engine parameter is used to specify the engine to use for augmenting lags. It can be either “pandas” or “polars”. - The default value is “pandas”. - When “polars”, the function will internally use the polars library for augmenting lags. This can be faster than using “pandas” for large datasets.
'pandas'
Returns
Type
Description
pd.DataFrame
A Pandas DataFrame with lead columns added to it.
Examples
import pandas as pdimport pytimetk as tkdf = tk.load_dataset('m4_daily', parse_dates=['date'])df
id
date
value
0
D10
2014-07-03
2076.2
1
D10
2014-07-04
2073.4
2
D10
2014-07-05
2048.7
3
D10
2014-07-06
2048.9
4
D10
2014-07-07
2006.4
...
...
...
...
9738
D500
2012-09-19
9418.8
9739
D500
2012-09-20
9365.7
9740
D500
2012-09-21
9445.9
9741
D500
2012-09-22
9497.9
9742
D500
2012-09-23
9545.3
9743 rows × 3 columns
# Example 1 - Add 7 lead values for a single DataFrame object, pandas enginelead_df_single = ( df .query('id == "D10"') .augment_leads( date_column='date', value_column='value', leads=(1, 7), engine='pandas' ))lead_df_single
id
date
value
value_lead_1
value_lead_2
value_lead_3
value_lead_4
value_lead_5
value_lead_6
value_lead_7
0
D10
2014-07-03
2076.2
2073.4
2048.7
2048.9
2006.4
2017.6
2019.1
2007.4
1
D10
2014-07-04
2073.4
2048.7
2048.9
2006.4
2017.6
2019.1
2007.4
2010.0
2
D10
2014-07-05
2048.7
2048.9
2006.4
2017.6
2019.1
2007.4
2010.0
2001.5
3
D10
2014-07-06
2048.9
2006.4
2017.6
2019.1
2007.4
2010.0
2001.5
1978.8
4
D10
2014-07-07
2006.4
2017.6
2019.1
2007.4
2010.0
2001.5
1978.8
1988.3
...
...
...
...
...
...
...
...
...
...
...
669
D10
2016-05-02
2630.7
2649.3
2631.8
2622.5
2620.1
NaN
NaN
NaN
670
D10
2016-05-03
2649.3
2631.8
2622.5
2620.1
NaN
NaN
NaN
NaN
671
D10
2016-05-04
2631.8
2622.5
2620.1
NaN
NaN
NaN
NaN
NaN
672
D10
2016-05-05
2622.5
2620.1
NaN
NaN
NaN
NaN
NaN
NaN
673
D10
2016-05-06
2620.1
NaN
NaN
NaN
NaN
NaN
NaN
NaN
674 rows × 10 columns
# Example 2 - Add a single lead value of 2 for each GroupBy object, polars enginelead_df = ( df .groupby('id') .augment_leads( date_column='date', value_column='value', leads=2, engine='polars' ))lead_df
id
date
value
value_lead_2
0
D10
2014-07-03
2076.2
2048.7
1
D10
2014-07-04
2073.4
2048.9
2
D10
2014-07-05
2048.7
2006.4
3
D10
2014-07-06
2048.9
2017.6
4
D10
2014-07-07
2006.4
2019.1
...
...
...
...
...
9738
D500
2012-09-19
9418.8
9445.9
9739
D500
2012-09-20
9365.7
9497.9
9740
D500
2012-09-21
9445.9
9545.3
9741
D500
2012-09-22
9497.9
NaN
9742
D500
2012-09-23
9545.3
NaN
9743 rows × 4 columns
# Example 3 add 2 lead values, 2 and 4, for a single DataFrame object, pandas enginelead_df_single_two = ( df .query('id == "D10"') .augment_leads( date_column='date', value_column='value', leads=[2, 4], engine='pandas' ))lead_df_single_two