augment_lags

augment_lags(data, date_column, value_column, lags=1, reduce_memory=False, engine='pandas')

Adds lags to a Pandas DataFrame or DataFrameGroupBy object.

The augment_lags function takes a Pandas DataFrame or GroupBy object, a date column, a value column or list of value columns, and a lag or list of lags, and adds lagged versions of the value columns to the DataFrame.

Parameters

Name Type Description Default
data pd.DataFrame or pd.core.groupby.generic.DataFrameGroupBy The data parameter is the input DataFrame or DataFrameGroupBy object that you want to add lagged columns to. required
date_column str The date_column parameter is a string that specifies the name of the column in the DataFrame that contains the dates. This column will be used to sort the data before adding the lagged values. required
value_column str or list The value_column parameter is the column(s) in the DataFrame that you want to add lagged values for. It can be either a single column name (string) or a list of column names. required
lags int or tuple or list The lags parameter is an integer, tuple, or list that specifies the number of lagged values to add to the DataFrame. - If it is an integer, the function will add that number of lagged values for each column specified in the value_column parameter. - If it is a tuple, it will generate lags from the first to the second value (inclusive). - If it is a list, it will generate lags based on the values in the list. 1
engine str The engine parameter is used to specify the engine to use for augmenting lags. It can be either “pandas” or “polars”. - The default value is “pandas”. - When “polars”, the function will internally use the polars library for augmenting lags. This can be faster than using “pandas” for large datasets. 'pandas'

Returns

Type Description
pd.DataFrame A Pandas DataFrame with lagged columns added to it.

Examples

import pandas as pd
import pytimetk as tk

df = tk.load_dataset('m4_daily', parse_dates=['date'])
df
id date value
0 D10 2014-07-03 2076.2
1 D10 2014-07-04 2073.4
2 D10 2014-07-05 2048.7
3 D10 2014-07-06 2048.9
4 D10 2014-07-07 2006.4
... ... ... ...
9738 D500 2012-09-19 9418.8
9739 D500 2012-09-20 9365.7
9740 D500 2012-09-21 9445.9
9741 D500 2012-09-22 9497.9
9742 D500 2012-09-23 9545.3

9743 rows × 3 columns

# Example 1 - Add 7 lagged values for a single DataFrame object, pandas engine
lagged_df_single = (
    df 
        .query('id == "D10"')
        .augment_lags(
            date_column='date',
            value_column='value',
            lags=(1, 7),
            engine='pandas'
        )
)
lagged_df_single
id date value value_lag_1 value_lag_2 value_lag_3 value_lag_4 value_lag_5 value_lag_6 value_lag_7
0 D10 2014-07-03 2076.2 NaN NaN NaN NaN NaN NaN NaN
1 D10 2014-07-04 2073.4 2076.2 NaN NaN NaN NaN NaN NaN
2 D10 2014-07-05 2048.7 2073.4 2076.2 NaN NaN NaN NaN NaN
3 D10 2014-07-06 2048.9 2048.7 2073.4 2076.2 NaN NaN NaN NaN
4 D10 2014-07-07 2006.4 2048.9 2048.7 2073.4 2076.2 NaN NaN NaN
... ... ... ... ... ... ... ... ... ... ...
669 D10 2016-05-02 2630.7 2601.0 2572.9 2544.0 2579.9 2585.8 2542.0 2534.2
670 D10 2016-05-03 2649.3 2630.7 2601.0 2572.9 2544.0 2579.9 2585.8 2542.0
671 D10 2016-05-04 2631.8 2649.3 2630.7 2601.0 2572.9 2544.0 2579.9 2585.8
672 D10 2016-05-05 2622.5 2631.8 2649.3 2630.7 2601.0 2572.9 2544.0 2579.9
673 D10 2016-05-06 2620.1 2622.5 2631.8 2649.3 2630.7 2601.0 2572.9 2544.0

674 rows × 10 columns

# Example 2 - Add a single lagged value of 2 for each GroupBy object, polars engine
lagged_df = (
    df 
        .groupby('id')
        .augment_lags(
            date_column='date',
            value_column='value',
            lags=(1, 3),
            engine='polars'
        )
)
lagged_df
id date value value_lag_1 value_lag_2 value_lag_3
0 D10 2014-07-03 2076.2 NaN NaN NaN
1 D10 2014-07-04 2073.4 2076.2 NaN NaN
2 D10 2014-07-05 2048.7 2073.4 2076.2 NaN
3 D10 2014-07-06 2048.9 2048.7 2073.4 2076.2
4 D10 2014-07-07 2006.4 2048.9 2048.7 2073.4
... ... ... ... ... ... ...
9738 D500 2012-09-19 9418.8 9431.9 9437.7 9474.6
9739 D500 2012-09-20 9365.7 9418.8 9431.9 9437.7
9740 D500 2012-09-21 9445.9 9365.7 9418.8 9431.9
9741 D500 2012-09-22 9497.9 9445.9 9365.7 9418.8
9742 D500 2012-09-23 9545.3 9497.9 9445.9 9365.7

9743 rows × 6 columns

# Example 3 add 2 lagged values, 2 and 4, for a single DataFrame object, pandas engine
lagged_df_single_two = (
    df 
        .query('id == "D10"')
        .augment_lags(
            date_column='date',
            value_column='value',
            lags=[2, 4],
            engine='pandas'
        )
)
lagged_df_single_two
id date value value_lag_2 value_lag_4
0 D10 2014-07-03 2076.2 NaN NaN
1 D10 2014-07-04 2073.4 NaN NaN
2 D10 2014-07-05 2048.7 2076.2 NaN
3 D10 2014-07-06 2048.9 2073.4 NaN
4 D10 2014-07-07 2006.4 2048.7 2076.2
... ... ... ... ... ...
669 D10 2016-05-02 2630.7 2572.9 2579.9
670 D10 2016-05-03 2649.3 2601.0 2544.0
671 D10 2016-05-04 2631.8 2630.7 2572.9
672 D10 2016-05-05 2622.5 2649.3 2601.0
673 D10 2016-05-06 2620.1 2631.8 2630.7

674 rows × 5 columns