augment_fip_momentum

augment_fip_momentum(
    data,
    date_column,
    close_column,
    window=252,
    reduce_memory=False,
    engine='pandas',
    fip_method='original',
    skip_window=0,
)

Calculate the “Frog In The Pan” (FIP) momentum metric over one or more rolling windows using either the pandas or polars engine, augmenting the DataFrame with FIP columns.

The FIP momentum is defined as:

An optional parameter, skip_window, allows you to skip the first n periods (e.g., one month) to mitigate the effects of mean reversion.

Parameters

Name Type Description Default
data Union[pd.DataFrame, pd.core.groupby.generic.DataFrameGroupBy] Input pandas DataFrame or grouped DataFrame containing time series data. required
date_column str Name of the column with dates or timestamps. required
close_column str Name of the column with closing prices to calculate returns. required
window Union[int, List[int]] Size of the rolling window(s) as an integer or list of integers (default is 252). 252
reduce_memory bool If True, reduces memory usage of the DataFrame. Default is False. False
engine str Computation engine: ‘pandas’ or ‘polars’. Default is ‘pandas’. 'pandas'
fip_method str Type of FIP calculation: - ‘original’: Original FIP calculation (default) where negative FIP indicates greater momentum. - ‘modified’: Modified FIP where positive FIP indicates greater momentum. 'original'
skip_window int Number of initial periods to skip (set to NA) for each rolling calculation. Default is 0. 0

Returns

Name Type Description
pd.DataFrame DataFrame augmented with FIP momentum columns: - {close_column}fip_momentum{w}: Rolling FIP momentum for each window w

Notes

  • For ‘original’, a positive FIP may indicate inconsistency in the trend.
  • For ‘modified’, a positive FIP indicates stronger momentum in the direction of the trend (upward or downward).

Examples

import pandas as pd
import pytimetk as tk

df = tk.load_dataset('stocks_daily', parse_dates=['date'])

# Single window with original FIP
fip_df = (
    df.query("symbol == 'AAPL'")
    .augment_fip_momentum(
        date_column='date',
        close_column='close',
        window=252
    )
)
fip_df.tail()
symbol date open high low close volume adjusted close_fip_momentum_252
8092 AAPL 2023-09-15 176.479996 176.500000 173.820007 175.009995 109205100 175.009995 -0.005537
8093 AAPL 2023-09-18 176.479996 179.380005 176.169998 177.970001 67257600 177.970001 -0.008667
8094 AAPL 2023-09-19 177.520004 179.630005 177.130005 179.070007 51826900 179.070007 -0.011206
8095 AAPL 2023-09-20 179.259995 179.699997 175.399994 175.490005 58436200 175.490005 -0.007016
8096 AAPL 2023-09-21 174.550003 176.300003 173.860001 173.929993 63047900 173.929993 -0.004738
# Multiple windows, polars engine, modified FIP
fip_df = (
    df.groupby('symbol')
    .augment_fip_momentum(
        date_column='date',
        close_column='close',
        window=[63, 252],
        fip_method='modified',
        engine='polars'
    )
)
fip_df.tail()
symbol date open high low close volume adjusted close_fip_momentum_63 close_fip_momentum_252
16189 GOOG 2023-09-15 138.800003 139.360001 137.179993 138.300003 48947600 138.300003 0.047619 0.000000
16190 GOOG 2023-09-18 137.630005 139.929993 137.630005 138.960007 16233600 138.960007 0.079365 0.007937
16191 GOOG 2023-09-19 138.250000 139.175003 137.500000 138.830002 15479100 138.830002 0.079365 0.007937
16192 GOOG 2023-09-20 138.830002 138.839996 134.520004 134.589996 21473500 134.589996 0.079365 0.000000
16193 GOOG 2023-09-21 132.389999 133.190002 131.089996 131.360001 22042700 131.360001 0.047619 0.000000