augment_cmo

augment_cmo(
    data,
    date_column,
    close_column,
    periods=14,
    reduce_memory=False,
    engine='auto',
)

Calculate the Chande Momentum Oscillator (CMO) using pandas or polars backends.

Parameters

Name Type Description Default
data DataFrame or GroupBy(pandas or polars) Input financial data. Grouped inputs are processed per group before the indicator columns are appended. required
date_column str or ColumnSelector Name or selector for the column containing date information. required
close_column str, ColumnSelector, or list Column(s) containing closing prices. Selectors/lists must resolve to a single column. required
periods int, tuple, or list Lookback window(s) applied to the CMO calculation. Accepts a single integer, an inclusive tuple range, or an explicit list. Defaults to 14. 14
reduce_memory bool Attempt to reduce memory usage when operating on pandas data. If a polars input is supplied a warning is emitted and no conversion occurs. False
engine (auto, pandas, polars) Execution engine. "auto" (default) infers the backend from the input data while allowing explicit overrides. "auto"

Returns

Name Type Description
DataFrame DataFrame with {close_column}_cmo_{period} columns appended for every requested period. The return type matches the input backend.

Notes

The Chande Momentum Oscillator (CMO) compares the magnitude of recent gains to recent losses over the supplied lookback window. Values range from -100 (all losses) to +100 (all gains). Division-by-zero cases are guarded by returning NaN which matches the pandas behaviour.

Examples

import pandas as pd
import polars as pl
import pytimetk as tk

df = tk.load_dataset("stocks_daily", parse_dates=["date"])

df
symbol date open high low close volume adjusted
0 META 2013-01-02 27.440001 28.180000 27.420000 28.000000 69846400 28.000000
1 META 2013-01-03 27.879999 28.469999 27.590000 27.770000 63140600 27.770000
2 META 2013-01-04 28.010000 28.930000 27.830000 28.760000 72715400 28.760000
3 META 2013-01-07 28.690001 29.790001 28.650000 29.420000 83781800 29.420000
4 META 2013-01-08 29.510000 29.600000 28.860001 29.059999 45871300 29.059999
... ... ... ... ... ... ... ... ...
16189 GOOG 2023-09-15 138.800003 139.360001 137.179993 138.300003 48947600 138.300003
16190 GOOG 2023-09-18 137.630005 139.929993 137.630005 138.960007 16233600 138.960007
16191 GOOG 2023-09-19 138.250000 139.175003 137.500000 138.830002 15479100 138.830002
16192 GOOG 2023-09-20 138.830002 138.839996 134.520004 134.589996 21473500 134.589996
16193 GOOG 2023-09-21 132.389999 133.190002 131.089996 131.360001 22042700 131.360001

16194 rows Γ— 8 columns

# Chande Momentum Oscillator - pandas engine
cmo_pd = (
    df
    .groupby("symbol")
    .augment_cmo(
        date_column="date",
        close_column="close",
        periods=[14, 28],
    )
)

cmo_pd.glimpse()
<class 'pandas.core.frame.DataFrame'>: 16194 rows of 10 columns
symbol:        object            ['META', 'META', 'META', 'META', 'META' ...
date:          datetime64[ns]    [Timestamp('2013-01-02 00:00:00'), Time ...
open:          float64           [27.440000534057617, 27.8799991607666,  ...
high:          float64           [28.18000030517578, 28.469999313354492, ...
low:           float64           [27.420000076293945, 27.59000015258789, ...
close:         float64           [28.0, 27.770000457763672, 28.760000228 ...
volume:        int64             [69846400, 63140600, 72715400, 83781800 ...
adjusted:      float64           [28.0, 27.770000457763672, 28.760000228 ...
close_cmo_14:  float64           [nan, nan, nan, nan, nan, nan, nan, nan ...
close_cmo_28:  float64           [nan, nan, nan, nan, nan, nan, nan, nan ...
# Chande Momentum Oscillator - polars engine
pl_df = pl.from_pandas(df.query("symbol == 'AAPL'"))
cmo_pl = (
    pl_df
    .tk.augment_cmo(
        date_column="date",
        close_column="close",
        periods=14,
    )
)

cmo_pl.glimpse()
Rows: 2699
Columns: 9
$ symbol                <str> 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL', 'AAPL'
$ date         <datetime[ns]> 2013-01-02 00:00:00, 2013-01-03 00:00:00, 2013-01-04 00:00:00, 2013-01-07 00:00:00, 2013-01-08 00:00:00, 2013-01-09 00:00:00, 2013-01-10 00:00:00, 2013-01-11 00:00:00, 2013-01-14 00:00:00, 2013-01-15 00:00:00
$ open                  <f64> 19.779285430908203, 19.567142486572266, 19.177499771118164, 18.64285659790039, 18.90035629272461, 18.66071319580078, 18.876785278320312, 18.60714340209961, 17.952856063842773, 17.796428680419922
$ high                  <f64> 19.821428298950195, 19.63107109069824, 19.236785888671875, 18.9035701751709, 18.996070861816406, 18.750356674194336, 18.882856369018555, 18.761428833007812, 18.125, 17.82107162475586
$ low                   <f64> 19.343929290771484, 19.321428298950195, 18.77964210510254, 18.399999618530273, 18.616071701049805, 18.428213119506836, 18.41142845153809, 18.53642845153809, 17.80392837524414, 17.26357078552246
$ close                 <f64> 19.608213424682617, 19.36071395874023, 18.821428298950195, 18.71071434020996, 18.761070251464844, 18.467857360839844, 18.696786880493164, 18.582143783569336, 17.91964340209961, 17.354286193847656
$ volume                <i64> 560518000, 352965200, 594333600, 484156400, 458707200, 407604400, 601146000, 350506800, 734207600, 876772400
$ adjusted              <f64> 16.791179656982422, 16.579240798950195, 16.1174373626709, 16.02262306213379, 16.065746307373047, 15.814659118652344, 16.010698318481445, 15.912524223327637, 15.345203399658203, 14.86106777191162
$ close_cmo_14          <f64> None, None, None, None, None, None, None, None, None, None
from pytimetk.utils.selection import contains

selector_df = (
    df
    .augment_cmo(
        date_column=contains("dat"),
        close_column=contains("clos"),
        periods=14,
    )
)

selector_df.glimpse()
<class 'pandas.core.frame.DataFrame'>: 16194 rows of 9 columns
symbol:        object            ['META', 'META', 'META', 'META', 'META' ...
date:          datetime64[ns]    [Timestamp('2013-01-02 00:00:00'), Time ...
open:          float64           [27.440000534057617, 27.8799991607666,  ...
high:          float64           [28.18000030517578, 28.469999313354492, ...
low:           float64           [27.420000076293945, 27.59000015258789, ...
close:         float64           [28.0, 27.770000457763672, 28.760000228 ...
volume:        int64             [69846400, 63140600, 72715400, 83781800 ...
adjusted:      float64           [28.0, 27.770000457763672, 28.760000228 ...
close_cmo_14:  float64           [nan, nan, 0.7218692365814648, 10.04243 ...