Compute tidy autocorrelation, partial autocorrelation, and optional cross-correlation diagnostics for one or more time series.
Parameters
Name
Type
Description
Default
data
pd.DataFrame or pd.core.groupby.generic.DataFrameGroupBy
Long-form time series data (optionally grouped via groupby).
required
date_column
str
Name of the datetime column.
required
value_column
str
Numeric column used to compute ACF/PACF diagnostics.
required
ccf_columns
str or sequence
Additional numeric columns to run cross-correlation against value_column. Accepts literal column names or tidy selectors created with :mod:pytimetk.utils.selection (e.g. contains("driver")).
None
lags
int, sequence, slice, or str
Lag specification. Integers mirror range(0, lags), sequences/slices are used verbatim, and strings such as "30 days" or "3 months" are resolved relative to the supplied index. Defaults to 1000.
1000
Returns
Name
Type
Description
pd.DataFrame
Diagnostics with columns: - grouping columns (when present) - metric ("ACF", "PACF", or "CCF_<column>") - lag (non-negative integer) - value (correlation) - white_noise_upper / white_noise_lower (95% bounds)