Core Functions in tidyquant
Matt Dancho
2024-12-01
Source:vignettes/TQ01-core-functions-in-tidyquant.Rmd
TQ01-core-functions-in-tidyquant.Rmd
A few core functions with a lot of power
Overview
The tidyquant
package has a few core functions
with a lot of power. Few functions means less of a learning
curve for the user, which is why there are only a handful of functions
the user needs to learn to perform the vast majority of financial
analysis tasks. The main functions are:
Get a Stock Index,
tq_index()
, or a Stock Exchange,tq_exchange()
: Returns the stock symbols and various attributes for every stock in an index or exchange. Eighteen indexes and three exchanges are available.Get Quantitative Data,
tq_get()
: A one-stop shop to get data from various web-sources.Transmute,
tq_transmute()
, and Mutate,tq_mutate()
, Quantitative Data: Perform and scale financial calculations completely within thetidyverse
. These workhorse functions integrate thexts
,zoo
,quantmod
, andTTR
packages.Performance analysis,
tq_performance()
, and portfolio aggregation,tq_portfolio()
: ThePerformanceAnalytics
integration enables analyzing performance of assets and portfolios. Because of the breadth of this topic, refer to Performance Analysis with tidyquant for a tutorial on these functions.
1.0 Retrieve Consolidated Symbol Data
1.1 Stock Indexes
A wide range of stock index / exchange lists can be retrieved using
tq_index()
. To get a full list of the options, use
tq_index_options()
.
## [1] "DOW" "DOWGLOBAL" "SP400" "SP500" "SP600"
Set x
as one of the options in the list of options above
to get the desired stock index / exchange.
tq_index("SP500")
The data source is State Street Global Advisors.
1.2 Stock Exchanges
Stock lists for three stock exchanges are available: NASDAQ, NYSE,
and AMEX. If you forget, just use tq_exchange_options()
. We
can easily get the full list of stocks on the NASDAQ exchange.
tq_exchange("NASDAQ")
1.0 Get Quantitative Data
The tq_get()
function is used to collect data by
changing the get
argument. The data sources:
- Yahoo Finance - Daily stock data
- FRED - Economic data
- Quandl - Economic, Energy, & Financial Data API
- Tiingo - Financial API with sub-daily stock data and crypto-currency
- Alpha Vantage - Financial API with sub-daily, ForEx, and crypto-currency data
- Bloomberg - Financial API. Paid account is required.
Use tq_get_options()
to see the full list.
## [1] "stock.prices" "stock.prices.japan" "dividends"
## [4] "splits" "economic.data" "quandl"
## [7] "quandl.datatable" "tiingo" "tiingo.iex"
## [10] "tiingo.crypto" "alphavantager" "alphavantage"
## [13] "rblpapi"
2.1 Yahoo! Finance
The stock prices can be retrieved succinctly using
get = "stock.prices"
. This returns stock price data from
Yahoo Finance.
aapl_prices <- tq_get("AAPL", get = "stock.prices", from = " 1990-01-01")
aapl_prices
## # A tibble: 8,796 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 1990-01-02 0.315 0.335 0.312 0.333 183198400 0.262
## 2 AAPL 1990-01-03 0.339 0.339 0.335 0.335 207995200 0.264
## 3 AAPL 1990-01-04 0.342 0.346 0.333 0.336 221513600 0.265
## 4 AAPL 1990-01-05 0.337 0.342 0.330 0.337 123312000 0.266
## 5 AAPL 1990-01-08 0.335 0.339 0.330 0.339 101572800 0.267
## 6 AAPL 1990-01-09 0.339 0.339 0.330 0.336 86139200 0.265
## 7 AAPL 1990-01-10 0.336 0.336 0.319 0.321 199718400 0.253
## 8 AAPL 1990-01-11 0.324 0.324 0.308 0.308 211052800 0.243
## 9 AAPL 1990-01-12 0.306 0.310 0.301 0.308 171897600 0.243
## 10 AAPL 1990-01-15 0.308 0.319 0.306 0.306 161739200 0.241
## # ℹ 8,786 more rows
We can get multiple stocks:
## # A tibble: 3,024 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 AAPL 2013-01-02 19.8 19.8 19.3 19.6 560518000 16.7
## 2 AAPL 2013-01-03 19.6 19.6 19.3 19.4 352965200 16.5
## 3 AAPL 2013-01-04 19.2 19.2 18.8 18.8 594333600 16.0
## 4 AAPL 2013-01-07 18.6 18.9 18.4 18.7 484156400 15.9
## 5 AAPL 2013-01-08 18.9 19.0 18.6 18.8 458707200 16.0
## 6 AAPL 2013-01-09 18.7 18.8 18.4 18.5 407604400 15.7
## 7 AAPL 2013-01-10 18.9 18.9 18.4 18.7 601146000 15.9
## 8 AAPL 2013-01-11 18.6 18.8 18.5 18.6 350506800 15.8
## 9 AAPL 2013-01-14 18.0 18.1 17.8 17.9 734207600 15.3
## 10 AAPL 2013-01-15 17.8 17.8 17.3 17.4 876772400 14.8
## # ℹ 3,014 more rows
Yahoo Japan stock prices can be retrieved using a similar call,
get = "stock.prices.japan"
.
x8411T <- tq_get("8411.T", get = "stock.prices.japan", from = "2016-01-01", to = "2016-12-31")
The data source is Yahoo Finance (https://finance.yahoo.com/) and Yahoo Finance Japan.
2.2 FRED Economic Data
A wealth of economic data can be extracted from the Federal Reserve Economic Data (FRED) database. The FRED contains over 10K data sets that are free to use. See the FRED categories to narrow down the data base and to get data codes. The WTI Crude Oil Prices are shown below.
wti_price_usd <- tq_get("DCOILWTICO", get = "economic.data")
wti_price_usd
## # A tibble: 2,844 × 3
## symbol date price
## <chr> <date> <dbl>
## 1 DCOILWTICO 2014-01-01 NA
## 2 DCOILWTICO 2014-01-02 95.1
## 3 DCOILWTICO 2014-01-03 93.7
## 4 DCOILWTICO 2014-01-06 93.1
## 5 DCOILWTICO 2014-01-07 93.3
## 6 DCOILWTICO 2014-01-08 91.9
## 7 DCOILWTICO 2014-01-09 91.4
## 8 DCOILWTICO 2014-01-10 92.4
## 9 DCOILWTICO 2014-01-13 91.4
## 10 DCOILWTICO 2014-01-14 92.2
## # ℹ 2,834 more rows
2.3 Nasdaq Data Link (Quandl) API
Quandl provides access to a vast number of financial and economic databases. The Quandl packages must be installed separately.
install.packages("Quandl")
Authentication
To make full use of the integration we recommend you set your api key. To do this create or sign into your Quandl account and go to your account api key page.
quandl_api_key("<your-api-key>")
Search
Searching Quandl from within the R console is possible with
quandl_search()
, a wrapper for
Quandl::Quandl.search()
. An example search is shown below.
The only required argument is query
. You can also visit the
Quandl Search webpage to
search for available database codes.
quandl_search(query = "Oil", database_code = "NSE", per_page = 3)
Getting Quandl Data
Getting data is integrated into tq_get()
. Two get
options exist to retrieve Quandl data:
-
get = "quandl"
: Get’s Quandl time series data. A wrapper forQuandl()
. -
get = "quandl.datatable"
: Gets Quandl datatables (larger data sets that may not be time series). A wrapper forQuandl.datatable()
.
Getting data from Quandl can be achieved in much the same way as the other “get” options. Just pass the “codes” for the data along with desired arguments for the underlying function.
The following uses get = "quandl"
and the “WIKI”
database to download daily stock prices for AAPL in 2016. The output is
a tidy data frame.
The following time series options are available to be passed to the
underlying Quandl()
function:
-
start_date
(from
) = “yyyy-mm-dd” |end_date
(to
) = “yyyy-mm-dd” -
column_index
= numeric column number (e.g. 1) -
rows
= numeric row number indicating first n rows (e.g. 100) -
collapse
= “none”, “daily”, “weekly”, “monthly”, “quarterly”, “annual” -
transform
= “none”, “diff”, “rdiff”, “cumul”, “normalize”
Here’s an example to get period returns of the adj.close (column
index 11) using the column_index
, collapse
and
transform
arguments.
"WIKI/AAPL" %>%
tq_get(get = "quandl",
from = "2007-01-01",
to = "2016-12-31",
column_index = 11,
collapse = "annual",
transform = "rdiff")
Datatables are larger data sets. These can be downloaded using
get = "quandl.datatable"
. Note that the time series
arguments do not work with data tables.
Here’s several examples of Zacks Fundamentals Collection B
# Zacks Fundamentals Collection B (DOW 30 Available to non subscribers)
tq_get("ZACKS/FC", get = "quandl.datatable") # Zacks Fundamentals Condensed
tq_get("ZACKS/FR", get = "quandl.datatable") # Zacks Fundamental Ratios
tq_get("ZACKS/MT", get = "quandl.datatable") # Zacks Master Table
tq_get("ZACKS/MKTV", get = "quandl.datatable") # Zacks Market Value Supplement
tq_get("ZACKS/SHRS", get = "quandl.datatable") # Zacks Shares Out Supplement
2.4 Tiingo API
The Tiingo API is a free source for stock prices, cryptocurrencies, and intraday feeds from the IEX (Investors Exchange). This can serve as an alternate source of data to Yahoo! Finance.
Authentication
To make full use of the integration you need to get an API key and then set your api key. If you don’t have one already, go to Tiingo account and get your FREE API key. You can then set it as follows:
tiingo_api_key('<your-api-key>')
Getting Tiingo Data
The tidyquant
package provides convenient wrappers to
the riingo
package (R interface to Tiingo). Here’s how
tq_get()
maps to riingo
:
- Tiingo Prices:
tq_get(get = "tiingo") = riingo::riingo_prices()
- Tiingo IEX Data:
tq_get(get = "tiingo.iex") = riingo::riingo_iex_prices()
- Tiingo Crypto Data:
tq_get(get = "tiingo.crypto") = riingo::riingo_crypto_prices()
# Tiingo Prices (Free alternative to Yahoo Finance!)
tq_get(c("AAPL", "GOOG"), get = "tiingo", from = "2010-01-01")
# Sub-daily prices from IEX ----
tq_get(c("AAPL", "GOOG"),
get = "tiingo.iex",
from = "2020-01-01",
to = "2020-01-15",
resample_frequency = "5min")
# Tiingo Bitcoin in USD ----
tq_get(c("btcusd"),
get = "tiingo.crypto",
from = "2020-01-01",
to = "2020-01-15",
resample_frequency = "5min")
2.5 Alpha Vantage API
Alpha Vantage provides
access to a real-time and historical financial data. The
alphavantager
package, a lightweight R interface, has been
integrated into tidyquant
as follows. The benefit of the
integration is the scalability since we can now get multiple
symbols returned in a tidy format. You will need to install it
first.
install.packages("alphavantager")
Authentication
To make full use of the integration you need to get an API key and then set your api key. If you don’t have one already, go to Alpha Vantage account and get your FREE API key. You can then set it as follows:
# install.packages("alphavantager")
av_api_key("<your-api-key>")
Getting Alpha Vantage Data
Getting data is simple as the structure follows the Alpha Vantage API
documentation. For example, if you wish to retrieve intraday data at
5 minute intervals for META and MSFT, you can build the parameters
x = c("META", "MSFT"), get = "alphavantager", av_fun = "TIME_SERIES_INTRADAY", interval = "5min"
.
The familiar x
and get
are the same as you
always use. The av_fun
argument comes from
alphavantager::av_get()
and the Alpha Vantage
documentation. The interval
argument comes from the docs as
well.
2.6 Bloomberg
Bloomberg
provides access to arguably the most comprehensive financial data and is
actively used by most major financial institutions that work with
financial data. The Rblpapi
package, an R interface to
Bloomberg, has been integrated into tidyquant
as follows.
The benefit of the integration is the scalability since we can
now get multiple symbols returned in a tidy format.
Authentication
To make full use of the integration you need to have a Bloomberg Terminal account (Note this is not a free service). If you have Bloomberg Terminal running on your machine, you can connect as follows:
# install.packages("Rblpapi")
Rblpapi::blpConnect()
Getting Bloomberg Data
Getting data is simple as the structure follows the Rblpapi API
documentation. For example, if you wish to retrieve monthly data for
SPX Index and AGTHX Equity, you can build the tq_get
parameters as follows:
x = c('SPX Index','ODMAX Equity')
get = "rblpapi"
-
rblpapi_fun = "bdh"
Note that “bdh” is the default, and options include “bdh” (Bloomberg Data History), “bds” (Bloomberg Data Set), and “bdp” (Bloomberg Data Point) -
from / to
These get passed tostart.date
andend.date
and can be provided in “YYYY-MM-DD” character format. Note thatstart.date
andend.date
fromRblpapi
can be used but must be converted to date or datetime. - Other arguments: These are options that depend on the
rblpapi_fun
. SeeRblpapi
documentation.
3.0 Mutate Quantitative Data
Mutating functions enable the xts
/zoo
,
quantmod
and TTR
functions to shine. We’ll
touch on the mutation functions briefly using the FANG
data
set, which consists of daily prices for META, AMZN, GOOG, and NFLX from
the beginning of 2013 to the end of 2016. We’ll apply the functions to
grouped data sets to get a feel for how each works
FANG
## # A tibble: 4,032 × 8
## symbol date open high low close volume adjusted
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-02 27.4 28.2 27.4 28 69846400 28
## 2 META 2013-01-03 27.9 28.5 27.6 27.8 63140600 27.8
## 3 META 2013-01-04 28.0 28.9 27.8 28.8 72715400 28.8
## 4 META 2013-01-07 28.7 29.8 28.6 29.4 83781800 29.4
## 5 META 2013-01-08 29.5 29.6 28.9 29.1 45871300 29.1
## 6 META 2013-01-09 29.7 30.6 29.5 30.6 104787700 30.6
## 7 META 2013-01-10 30.6 31.5 30.3 31.3 95316400 31.3
## 8 META 2013-01-11 31.3 32.0 31.1 31.7 89598000 31.7
## 9 META 2013-01-14 32.1 32.2 30.6 31.0 98892800 31.0
## 10 META 2013-01-15 30.6 31.7 29.9 30.1 173242600 30.1
## # ℹ 4,022 more rows
For a detailed walkthrough of the compatible functions, see the next vignette in the series, R Quantitative Analysis Package Integrations in tidyquant.
3.1 Transmute Quantitative Data, tq_transmute
Transmute the results of tq_get()
. Transmute here holds
almost the same meaning as in dplyr
, only the newly created
columns will be returned, but with tq_transmute()
, the
number of rows returned can be different than the original data frame.
This is important for changing periodicity. An example is periodicity
aggregation from daily to monthly.
FANG %>%
group_by(symbol) %>%
tq_transmute(select = adjusted, mutate_fun = to.monthly, indexAt = "lastof")
## # A tibble: 192 × 3
## # Groups: symbol [4]
## symbol date adjusted
## <chr> <date> <dbl>
## 1 META 2013-01-31 31.0
## 2 META 2013-02-28 27.2
## 3 META 2013-03-31 25.6
## 4 META 2013-04-30 27.8
## 5 META 2013-05-31 24.4
## 6 META 2013-06-30 24.9
## 7 META 2013-07-31 36.8
## 8 META 2013-08-31 41.3
## 9 META 2013-09-30 50.2
## 10 META 2013-10-31 50.2
## # ℹ 182 more rows
Let’s go through what happened. select
allows you to
easily choose what columns get passed to mutate_fun
. In
example above, adjusted
selects the “adjusted” column from
data
, and sends it to the mutate function,
to.monthly
, which mutates the periodicity from daily to
monthly. Additional arguments can be passed to the
mutate_fun
by way of ...
. We are passing the
indexAt
argument to return a date that matches the first
date in the period.
Working with non-OHLC data
Returns from FRED, Oanda, and other sources do not have open, high,
low, close (OHLC) format. However, this is not a problem with
select
. The following example shows how to transmute WTI
Crude daily prices to monthly prices. Since we only have a single column
to pass, we can leave the select
argument as
NULL
which selects all columns by default. This sends the
price column to the to.period
mutate function.
wti_prices <- tq_get("DCOILWTICO", get = "economic.data")
wti_prices %>%
tq_transmute(mutate_fun = to.period,
period = "months",
col_rename = "WTI Price")
## # A tibble: 131 × 2
## date `WTI Price`
## <date> <dbl>
## 1 2014-01-31 97.6
## 2 2014-02-28 103.
## 3 2014-03-31 102.
## 4 2014-04-30 100.
## 5 2014-05-30 103.
## 6 2014-06-30 106.
## 7 2014-07-31 98.2
## 8 2014-08-29 97.9
## 9 2014-09-30 91.2
## 10 2014-10-31 80.5
## # ℹ 121 more rows
3.2 Mutate Quantitative Data, tq_mutate
Adds a column or set of columns to the tibble with the calculated
attributes (hence the original tibble is returned, mutated with the
additional columns). An example is getting the MACD
from
close
, which mutates the original input by adding MACD and
Signal columns. Note that we can quickly rename the columns using the
col_rename
argument.
FANG %>%
group_by(symbol) %>%
tq_mutate(select = close,
mutate_fun = MACD,
col_rename = c("MACD", "Signal"))
## # A tibble: 4,032 × 10
## # Groups: symbol [4]
## symbol date open high low close volume adjusted MACD Signal
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-02 27.4 28.2 27.4 28 69846400 28 NA NA
## 2 META 2013-01-03 27.9 28.5 27.6 27.8 63140600 27.8 NA NA
## 3 META 2013-01-04 28.0 28.9 27.8 28.8 72715400 28.8 NA NA
## 4 META 2013-01-07 28.7 29.8 28.6 29.4 83781800 29.4 NA NA
## 5 META 2013-01-08 29.5 29.6 28.9 29.1 45871300 29.1 NA NA
## 6 META 2013-01-09 29.7 30.6 29.5 30.6 104787700 30.6 NA NA
## 7 META 2013-01-10 30.6 31.5 30.3 31.3 95316400 31.3 NA NA
## 8 META 2013-01-11 31.3 32.0 31.1 31.7 89598000 31.7 NA NA
## 9 META 2013-01-14 32.1 32.2 30.6 31.0 98892800 31.0 NA NA
## 10 META 2013-01-15 30.6 31.7 29.9 30.1 173242600 30.1 NA NA
## # ℹ 4,022 more rows
Note that a mutation can occur if, and only if, the mutation has the same structure of the original tibble. In other words, the calculation must have the same number of rows and row.names (or date fields), otherwise the mutation cannot be performed.
Mutate rolling regressions with rollapply
A very powerful example is applying custom functions
across a rolling window using rollapply
. A specific example
is using the rollapply
function to compute a rolling
regression. This example is slightly more complicated so it will be
broken down into three steps:
- Get returns
- Create a custom function
- Apply the custom function across a rolling window using
tq_mutate(mutate_fun = rollapply)
Step 1: Get Returns
First, get combined returns. The asset and baseline returns should be
in wide format, which is needed for the lm
function in the
next step.
fb_returns <- tq_get("META", get = "stock.prices", from = "2016-01-01", to = "2016-12-31") %>%
tq_transmute(adjusted, periodReturn, period = "weekly", col_rename = "fb.returns")
xlk_returns <- tq_get("XLK", from = "2016-01-01", to = "2016-12-31") %>%
tq_transmute(adjusted, periodReturn, period = "weekly", col_rename = "xlk.returns")
returns_combined <- left_join(fb_returns, xlk_returns, by = "date")
returns_combined
## # A tibble: 52 × 3
## date fb.returns xlk.returns
## <date> <dbl> <dbl>
## 1 2016-01-08 -0.0478 -0.0516
## 2 2016-01-15 -0.0242 -0.0187
## 3 2016-01-22 0.0313 0.0264
## 4 2016-01-29 0.146 0.0213
## 5 2016-02-05 -0.0725 -0.0422
## 6 2016-02-12 -0.0198 -0.00582
## 7 2016-02-19 0.0251 0.0354
## 8 2016-02-26 0.0320 0.0148
## 9 2016-03-04 0.00436 0.0281
## 10 2016-03-11 0.00941 0.0106
## # ℹ 42 more rows
Step 2: Create a custom function
Next, create a custom regression function, which will be used to
apply over the rolling window in Step 3. An important point is that the
“data” will be passed to the regression function as an xts
object. The timetk::tk_tbl
function takes care of
converting to a data frame for the lm
function to work
properly with the columns “fb.returns” and “xlk.returns”.
regr_fun <- function(data) {
coef(lm(fb.returns ~ xlk.returns, data = timetk::tk_tbl(data, silent = TRUE)))
}
Step 3: Apply the custom function
Now we can use tq_mutate()
to apply the custom
regression function over a rolling window using rollapply
from the zoo
package. Internally, since we left
select = NULL
, the returns_combined
data frame
is being passed automatically to the data
argument of the
rollapply
function. All you need to specify is the
mutate_fun = rollapply
and any additional arguments
necessary to apply the rollapply
function. We’ll specify a
12 week window via width = 12
. The FUN
argument is our custom regression function, regr_fun
. It’s
extremely important to specify by.column = FALSE
, which
tells rollapply
to perform the computation using the data
as a whole rather than apply the function to each column independently.
The col_rename
argument is used to rename the added
columns.
returns_combined %>%
tq_mutate(mutate_fun = rollapply,
width = 12,
FUN = regr_fun,
by.column = FALSE,
col_rename = c("coef.0", "coef.1"))
## # A tibble: 52 × 5
## date fb.returns xlk.returns coef.0 coef.1
## <date> <dbl> <dbl> <dbl> <dbl>
## 1 2016-01-08 -0.0478 -0.0516 NA NA
## 2 2016-01-15 -0.0242 -0.0187 NA NA
## 3 2016-01-22 0.0313 0.0264 NA NA
## 4 2016-01-29 0.146 0.0213 NA NA
## 5 2016-02-05 -0.0725 -0.0422 NA NA
## 6 2016-02-12 -0.0198 -0.00582 NA NA
## 7 2016-02-19 0.0251 0.0354 NA NA
## 8 2016-02-26 0.0320 0.0148 NA NA
## 9 2016-03-04 0.00436 0.0281 NA NA
## 10 2016-03-11 0.00941 0.0106 NA NA
## # ℹ 42 more rows
returns_combined
## # A tibble: 52 × 3
## date fb.returns xlk.returns
## <date> <dbl> <dbl>
## 1 2016-01-08 -0.0478 -0.0516
## 2 2016-01-15 -0.0242 -0.0187
## 3 2016-01-22 0.0313 0.0264
## 4 2016-01-29 0.146 0.0213
## 5 2016-02-05 -0.0725 -0.0422
## 6 2016-02-12 -0.0198 -0.00582
## 7 2016-02-19 0.0251 0.0354
## 8 2016-02-26 0.0320 0.0148
## 9 2016-03-04 0.00436 0.0281
## 10 2016-03-11 0.00941 0.0106
## # ℹ 42 more rows
As shown above, the rolling regression coefficients were added to the data frame.
3.3 _xy Variants, tq_mutate_xy and tq_transmute_xy
Enables working with mutation functions that require two primary inputs (e.g. EVWMA, VWAP, etc).
Mutate with two primary inputs
EVWMA (exponential volume-weighted moving average) requires two
inputs, price and volume. To work with these columns, we can switch to
the xy variants, tq_transmute_xy()
and
tq_mutate_xy()
. The only difference is instead of the
select
argument, you use x
and y
arguments to pass the columns needed based on the
mutate_fun
documentation.
FANG %>%
group_by(symbol) %>%
tq_mutate_xy(x = close, y = volume,
mutate_fun = EVWMA, col_rename = "EVWMA")
## # A tibble: 4,032 × 9
## # Groups: symbol [4]
## symbol date open high low close volume adjusted EVWMA
## <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 META 2013-01-02 27.4 28.2 27.4 28 69846400 28 NA
## 2 META 2013-01-03 27.9 28.5 27.6 27.8 63140600 27.8 NA
## 3 META 2013-01-04 28.0 28.9 27.8 28.8 72715400 28.8 NA
## 4 META 2013-01-07 28.7 29.8 28.6 29.4 83781800 29.4 NA
## 5 META 2013-01-08 29.5 29.6 28.9 29.1 45871300 29.1 NA
## 6 META 2013-01-09 29.7 30.6 29.5 30.6 104787700 30.6 NA
## 7 META 2013-01-10 30.6 31.5 30.3 31.3 95316400 31.3 NA
## 8 META 2013-01-11 31.3 32.0 31.1 31.7 89598000 31.7 NA
## 9 META 2013-01-14 32.1 32.2 30.6 31.0 98892800 31.0 NA
## 10 META 2013-01-15 30.6 31.7 29.9 30.1 173242600 30.1 30.1
## # ℹ 4,022 more rows