Use a concise filtering method to filter a tbl_time object by its index.

filter_time(.tbl_time, time_formula)

# S3 method for class 'tbl_time'
x[i, j, drop = FALSE]

Arguments

.tbl_time

A tbl_time object.

time_formula

A period to filter over. This is specified as a formula. See Details.

x

Same as .tbl_time but consistent naming with base R.

i

A period to filter over. This is specified the same as time_formula or can use the traditional row extraction method.

j

Optional argument to also specify column index to subset. Works exactly like the normal extraction operator.

drop

Will always be coerced to FALSE by tibble.

Details

The time_formula is specified using the format from ~ to. Each side of the time_formula is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful shorthand is available. Some examples are:

  • Year: '2013' ~ '2015'

  • Month: '2013-01' ~ '2016-06'

  • Day: '2013-01-05' ~ '2016-06-04'

  • Second: '2013-01-05 10:22:15' ~ '2018-06-03 12:14:22'

  • Variations: '2013' ~ '2016-06'

The time_formula can also use a one sided formula.

  • Only dates in 2015: ~'2015'

  • Only dates March 2015: ~'2015-03'

The time_formula can also use 'start' and 'end' as keywords for your filter.

  • Start of the series to end of 2015: 'start' ~ '2015'

  • Start of 2014 to end of series: '2014' ~ 'end'

All shorthand dates are expanded:

  • The from side is expanded to be the first date in that period

  • The to side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

  • '2015' ~ '2016' == '2015-01-01 + 00:00:00' ~ '2016-12-31 + 23:59:59'

  • ~'2015' == '2015-01-01 + 00:00:00' ~ '2015-12-31 + 23:59:59'

  • '2015-01-04 + 10:12' ~ '2015-01-05' == '2015-01-04 + 10:12:00' ~ '2015-01-05 + 23:59:59'

Special parsing is done for indices of class hms. The from ~ to time formula is specified as only HH:MM:SS.

  • Start to 5th second of the 12th hour: 'start' ~ '12:00:05'

  • Every second in the 12th hour: ~'12'

Subsecond resolution is also supported, however, R has a unique way of handling and printing subsecond dates and the user should be comfortable with this already. Specify subsecond resolution like so: '2013-01-01 00:00:00.1' ~ '2013-01-01 00:00:00.2'. Note that one sided expansion does not work with subsecond resolution due to seconds and subseconds being grouped together into 1 number (i.e. 1.2 seconds). This means ~'2013-01-01 00:00:00' does not expand to something like '2013-01-01 00:00:00.00' ~ '2013-01-01 00:00:00.99', but only expands to include whole seconds.

This function respects dplyr::group_by() groups.

Examples


# FANG contains Facebook, Amazon, Netflix and Google stock prices
data(FANG)
FANG <- as_tbl_time(FANG, date) %>%
  dplyr::group_by(symbol)

# 2013-01-01 to 2014-12-31
filter_time(FANG, '2013' ~ '2014')
#> # A time tibble: 2,016 × 8
#> # Index:         date
#> # Groups:        symbol [4]
#>    symbol date        open  high   low close    volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
#>  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
#>  2 FB     2013-01-03  27.9  28.5  27.6  27.8  63140600     27.8
#>  3 FB     2013-01-04  28.0  28.9  27.8  28.8  72715400     28.8
#>  4 FB     2013-01-07  28.7  29.8  28.6  29.4  83781800     29.4
#>  5 FB     2013-01-08  29.5  29.6  28.9  29.1  45871300     29.1
#>  6 FB     2013-01-09  29.7  30.6  29.5  30.6 104787700     30.6
#>  7 FB     2013-01-10  30.6  31.5  30.3  31.3  95316400     31.3
#>  8 FB     2013-01-11  31.3  32.0  31.1  31.7  89598000     31.7
#>  9 FB     2013-01-14  32.1  32.2  30.6  31.0  98892800     31.0
#> 10 FB     2013-01-15  30.6  31.7  29.9  30.1 173242600     30.1
#> # ℹ 2,006 more rows

# 2013-05-25 to 2014-06-04
filter_time(FANG, '2013-05-25' ~ '2014-06-04')
#> # A time tibble: 1,032 × 8
#> # Index:         date
#> # Groups:        symbol [4]
#>    symbol date        open  high   low close   volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
#>  1 FB     2013-05-28  24.5  24.5  23.9  24.1 50079700     24.1
#>  2 FB     2013-05-29  23.8  23.8  23.3  23.3 64237800     23.3
#>  3 FB     2013-05-30  24.1  24.8  23.9  24.5 60733200     24.5
#>  4 FB     2013-05-31  24.6  25.0  24.3  24.4 35925000     24.4
#>  5 FB     2013-06-03  24.3  24.3  23.7  23.8 35733800     23.8
#>  6 FB     2013-06-04  23.9  23.9  23.3  23.5 34760800     23.5
#>  7 FB     2013-06-05  23.4  23.7  22.8  22.9 53819700     22.9
#>  8 FB     2013-06-06  23.0  23.1  22.7  23.0 31260700     23.0
#>  9 FB     2013-06-07  23.0  23.4  22.9  23.3 38699200     23.3
#> 10 FB     2013-06-10  24.1  24.6  24.0  24.3 58393000     24.3
#> # ℹ 1,022 more rows

# Using the `[` subset operator
FANG['2014'~'2015']
#> # A time tibble: 2,016 × 8
#> # Index:         date
#>    symbol date        open  high   low close   volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
#>  1 FB     2014-01-02  54.8  55.2  54.2  54.7 43195500     54.7
#>  2 FB     2014-01-03  55.0  55.7  54.5  54.6 38246200     54.6
#>  3 FB     2014-01-06  54.4  57.3  54.0  57.2 68852600     57.2
#>  4 FB     2014-01-07  57.7  58.5  57.2  57.9 77207400     57.9
#>  5 FB     2014-01-08  57.6  58.4  57.2  58.2 56682400     58.2
#>  6 FB     2014-01-09  58.7  59.0  56.7  57.2 92253300     57.2
#>  7 FB     2014-01-10  57.1  58.3  57.1  57.9 42449500     57.9
#>  8 FB     2014-01-13  57.9  58.2  55.4  55.9 63010900     55.9
#>  9 FB     2014-01-14  56.5  57.8  56.1  57.7 37503600     57.7
#> 10 FB     2014-01-15  58.0  58.6  57.3  57.6 33663400     57.6
#> # ℹ 2,006 more rows

# Using `[` and one sided formula for only dates in 2014
FANG[~'2014']
#> # A time tibble: 1,008 × 8
#> # Index:         date
#>    symbol date        open  high   low close   volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
#>  1 FB     2014-01-02  54.8  55.2  54.2  54.7 43195500     54.7
#>  2 FB     2014-01-03  55.0  55.7  54.5  54.6 38246200     54.6
#>  3 FB     2014-01-06  54.4  57.3  54.0  57.2 68852600     57.2
#>  4 FB     2014-01-07  57.7  58.5  57.2  57.9 77207400     57.9
#>  5 FB     2014-01-08  57.6  58.4  57.2  58.2 56682400     58.2
#>  6 FB     2014-01-09  58.7  59.0  56.7  57.2 92253300     57.2
#>  7 FB     2014-01-10  57.1  58.3  57.1  57.9 42449500     57.9
#>  8 FB     2014-01-13  57.9  58.2  55.4  55.9 63010900     55.9
#>  9 FB     2014-01-14  56.5  57.8  56.1  57.7 37503600     57.7
#> 10 FB     2014-01-15  58.0  58.6  57.3  57.6 33663400     57.6
#> # ℹ 998 more rows

# Using `[` and column selection
FANG['2013'~'2016', c("date", "adjusted")]
#> # A time tibble: 4,032 × 2
#> # Index:         date
#>    date       adjusted
#>    <date>        <dbl>
#>  1 2013-01-02     28  
#>  2 2013-01-03     27.8
#>  3 2013-01-04     28.8
#>  4 2013-01-07     29.4
#>  5 2013-01-08     29.1
#>  6 2013-01-09     30.6
#>  7 2013-01-10     31.3
#>  8 2013-01-11     31.7
#>  9 2013-01-14     31.0
#> 10 2013-01-15     30.1
#> # ℹ 4,022 more rows

# Variables are unquoted using rlang
lhs_date <- "2013"
rhs_date <- as.Date("2014-01-01")
filter_time(FANG, lhs_date ~ rhs_date)
#> # A time tibble: 1,008 × 8
#> # Index:         date
#> # Groups:        symbol [4]
#>    symbol date        open  high   low close    volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
#>  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
#>  2 FB     2013-01-03  27.9  28.5  27.6  27.8  63140600     27.8
#>  3 FB     2013-01-04  28.0  28.9  27.8  28.8  72715400     28.8
#>  4 FB     2013-01-07  28.7  29.8  28.6  29.4  83781800     29.4
#>  5 FB     2013-01-08  29.5  29.6  28.9  29.1  45871300     29.1
#>  6 FB     2013-01-09  29.7  30.6  29.5  30.6 104787700     30.6
#>  7 FB     2013-01-10  30.6  31.5  30.3  31.3  95316400     31.3
#>  8 FB     2013-01-11  31.3  32.0  31.1  31.7  89598000     31.7
#>  9 FB     2013-01-14  32.1  32.2  30.6  31.0  98892800     31.0
#> 10 FB     2013-01-15  30.6  31.7  29.9  30.1 173242600     30.1
#> # ℹ 998 more rows

# Use the keywords 'start' and 'end' to conveniently access ends
filter_time(FANG, 'start' ~ '2014')
#> # A time tibble: 2,016 × 8
#> # Index:         date
#> # Groups:        symbol [4]
#>    symbol date        open  high   low close    volume adjusted
#>    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
#>  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
#>  2 FB     2013-01-03  27.9  28.5  27.6  27.8  63140600     27.8
#>  3 FB     2013-01-04  28.0  28.9  27.8  28.8  72715400     28.8
#>  4 FB     2013-01-07  28.7  29.8  28.6  29.4  83781800     29.4
#>  5 FB     2013-01-08  29.5  29.6  28.9  29.1  45871300     29.1
#>  6 FB     2013-01-09  29.7  30.6  29.5  30.6 104787700     30.6
#>  7 FB     2013-01-10  30.6  31.5  30.3  31.3  95316400     31.3
#>  8 FB     2013-01-11  31.3  32.0  31.1  31.7  89598000     31.7
#>  9 FB     2013-01-14  32.1  32.2  30.6  31.0  98892800     31.0
#> 10 FB     2013-01-15  30.6  31.7  29.9  30.1 173242600     30.1
#> # ℹ 2,006 more rows

# hms (hour, minute, second) classes have special parsing
hms_example <- create_series(~'12:01', 'second', class = 'hms')
filter_time(hms_example, 'start' ~ '12:01:30')
#> # A time tibble: 31 × 1
#> # Index:         date
#>    date    
#>    <time>  
#>  1 12:01:00
#>  2 12:01:01
#>  3 12:01:02
#>  4 12:01:03
#>  5 12:01:04
#>  6 12:01:05
#>  7 12:01:06
#>  8 12:01:07
#>  9 12:01:08
#> 10 12:01:09
#> # ℹ 21 more rows