Introducing as_period()

Often with time series you want to aggregate your dataset to a less granular period. An example of this might be moving from a daily series to a monthly series to look at broader trends in your data. as_period() allows you to do exactly this.

The period argument in as_period() for specifying the transformation you want is a character with a general format of "frequency period" where frequency is a number like 1 or 2, and period is an interval like weekly or yearly. There must be a space between the two.

Datasets required

library(tibbletime)
library(dplyr)

# Facebook stock prices.
data(FB)

# Convert FB to tbl_time
FB <- as_tbl_time(FB, index = date)

# FANG stock prices
data(FANG)

# Convert FANG to tbl_time and group
FANG <- as_tbl_time(FANG, index = date) %>%
  group_by(symbol)

Daily to monthly

To see this in action, transform the daily FB data set to monthly data.

as_period(FB, '1 month')
## # A time tibble: 48 × 8
## # Index:         date
##    symbol date        open  high   low close    volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
##  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
##  2 FB     2013-02-01  31.0  31.0  29.6  29.7  85856700     29.7
##  3 FB     2013-03-01  27.0  28.1  26.8  27.8  54064800     27.8
##  4 FB     2013-04-01  25.6  25.9  25.3  25.5  22249300     25.5
##  5 FB     2013-05-01  27.8  27.9  27.3  27.4  64567600     27.4
##  6 FB     2013-06-03  24.3  24.3  23.7  23.8  35733800     23.8
##  7 FB     2013-07-01  25.0  25.1  24.6  24.8  20582200     24.8
##  8 FB     2013-08-01  37.3  38.3  36.9  37.5 106066500     37.5
##  9 FB     2013-09-03  41.8  42.2  41.5  41.9  48774900     41.9
## 10 FB     2013-10-01  50.0  51.0  49.5  50.4  98114000     50.4
## # ℹ 38 more rows
# Additionally, the following are equivalent
# as_period(FB, 'month')
# as_period(FB, 'm')
# as_period(FB, '1 m')

Generic periods

You aren’t restricted to only 1 month periods. Maybe you wanted every 2 months?

as_period(FB, '2 m')
## # A time tibble: 24 × 8
## # Index:         date
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 FB     2013-01-02  27.4  28.2  27.4  28   69846400     28  
##  2 FB     2013-03-01  27.0  28.1  26.8  27.8 54064800     27.8
##  3 FB     2013-05-01  27.8  27.9  27.3  27.4 64567600     27.4
##  4 FB     2013-07-01  25.0  25.1  24.6  24.8 20582200     24.8
##  5 FB     2013-09-03  41.8  42.2  41.5  41.9 48774900     41.9
##  6 FB     2013-11-01  50.8  52.1  49.7  49.8 95033000     49.8
##  7 FB     2014-01-02  54.8  55.2  54.2  54.7 43195500     54.7
##  8 FB     2014-03-03  67.0  68.1  66.5  67.4 56824100     67.4
##  9 FB     2014-05-01  60.4  62.3  60.2  61.2 82429000     61.2
## 10 FB     2014-07-01  67.6  68.4  67.4  68.1 33243000     68.1
## # ℹ 14 more rows

Or maybe every 25 days? Note that the dates do not line up exactly with a difference of 25 days. This is due to the data set not being completely regular (there are gaps due to weekends and holidays). as_period() chooses the first date it can find in the period specified.

as_period(FB, '25 d')
## # A time tibble: 59 × 8
## # Index:         date
##    symbol date        open  high   low close   volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
##  1 FB     2013-01-02  27.4  28.2  27.4  28   69846400     28  
##  2 FB     2013-01-28  31.9  32.5  31.8  32.5 59682500     32.5
##  3 FB     2013-02-20  28.9  29.0  28.3  28.5 42098200     28.5
##  4 FB     2013-03-18  26.4  26.8  25.8  26.5 26653700     26.5
##  5 FB     2013-04-11  27.5  28.1  27.2  28.0 33368500     28.0
##  6 FB     2013-05-06  28.3  28.5  27.5  27.6 43939400     27.6
##  7 FB     2013-05-31  24.6  25.0  24.3  24.4 35925000     24.4
##  8 FB     2013-06-25  24.1  24.4  24.0  24.2 24713200     24.2
##  9 FB     2013-07-22  26.0  26.1  25.7  26.0 27526300     26.0
## 10 FB     2013-08-14  36.8  37.5  36.6  36.7 48423900     36.7
## # ℹ 49 more rows

Details and the start_date argument

By default, the date that starts the first group is calculated as:

  1. Find the minimum date in your dataset.

  2. Floor that date to the period that you specified.

In the 1 month example above, 2013-01-02 is the first date in the series, and because “month” was chosen, the first group is defined as (2013-01-01 to 2013-01-31).

Occasionally this is not what you want. Consider what would happen if you changed the period to “every 2 days”. The first date is 2013-01-02, but because “day” is chosen, this isn’t floored to 2013-01-01 so the groups are (2013-01-02, 2013-01-03), (2013-01-04, 2013-01-05) and so on. If you wanted the first group to be (2013-01-01, 2013-01-02), you can use the start_date argument.

# Without start_date
as_period(FB, '2 d')
## # A time tibble: 619 × 8
## # Index:         date
##    symbol date        open  high   low close    volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
##  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
##  2 FB     2013-01-03  27.9  28.5  27.6  27.8  63140600     27.8
##  3 FB     2013-01-07  28.7  29.8  28.6  29.4  83781800     29.4
##  4 FB     2013-01-09  29.7  30.6  29.5  30.6 104787700     30.6
##  5 FB     2013-01-11  31.3  32.0  31.1  31.7  89598000     31.7
##  6 FB     2013-01-14  32.1  32.2  30.6  31.0  98892800     31.0
##  7 FB     2013-01-15  30.6  31.7  29.9  30.1 173242600     30.1
##  8 FB     2013-01-17  30.1  30.4  30.0  30.1  40256700     30.1
##  9 FB     2013-01-22  29.8  30.9  29.7  30.7  55243300     30.7
## 10 FB     2013-01-23  31.1  31.5  30.8  30.8  48899800     30.8
## # ℹ 609 more rows
# With start_date
as_period(FB, '2 d', start_date = "2013-01-01")
## # A time tibble: 619 × 8
## # Index:         date
##    symbol date        open  high   low close    volume adjusted
##    <chr>  <date>     <dbl> <dbl> <dbl> <dbl>     <dbl>    <dbl>
##  1 FB     2013-01-02  27.4  28.2  27.4  28    69846400     28  
##  2 FB     2013-01-03  27.9  28.5  27.6  27.8  63140600     27.8
##  3 FB     2013-01-07  28.7  29.8  28.6  29.4  83781800     29.4
##  4 FB     2013-01-09  29.7  30.6  29.5  30.6 104787700     30.6
##  5 FB     2013-01-11  31.3  32.0  31.1  31.7  89598000     31.7
##  6 FB     2013-01-14  32.1  32.2  30.6  31.0  98892800     31.0
##  7 FB     2013-01-15  30.6  31.7  29.9  30.1 173242600     30.1
##  8 FB     2013-01-17  30.1  30.4  30.0  30.1  40256700     30.1
##  9 FB     2013-01-22  29.8  30.9  29.7  30.7  55243300     30.7
## 10 FB     2013-01-23  31.1  31.5  30.8  30.8  48899800     30.8
## # ℹ 609 more rows

The side argument

By default, the first date per period is returned. If you want the end of each period instead, specify the side = "end" argument.

as_period(FB, 'y', side = "end")
## # A time tibble: 4 × 8
## # Index:         date
##   symbol date        open  high   low close   volume adjusted
##   <chr>  <date>     <dbl> <dbl> <dbl> <dbl>    <dbl>    <dbl>
## 1 FB     2013-12-31  54.1  54.9  53.9  54.7 43076200     54.7
## 2 FB     2014-12-31  79.5  79.8  77.9  78.0 19935400     78.0
## 3 FB     2015-12-31 106   106.  105.  105.  18298700    105. 
## 4 FB     2016-12-30 117.  117.  115.  115.  18600100    115.

Grouped datasets

One of the neat things about working in the tidyverse is that these functions can also work with grouped datasets. Here we transform the daily series of the 4 FANG stocks to a periodicity of every 2 years.

FANG %>%
  as_period('2 y')
## # A time tibble: 12 × 8
## # Index:         date
## # Groups:        symbol [4]
##    symbol date         open   high    low  close   volume adjusted
##    <chr>  <date>      <dbl>  <dbl>  <dbl>  <dbl>    <dbl>    <dbl>
##  1 FB     2013-01-02   27.4   28.2   27.4   28   69846400     28  
##  2 FB     2014-01-02   54.8   55.2   54.2   54.7 43195500     54.7
##  3 FB     2016-01-04  102.   102.    99.8  102.  37912400    102. 
##  4 AMZN   2013-01-02  256.   258.   253.   257.   3271000    257. 
##  5 AMZN   2014-01-02  399.   399.   394.   398.   2137800    398. 
##  6 AMZN   2016-01-04  656.   658.   628.   637.   9314500    637. 
##  7 NFLX   2013-01-02   95.2   95.8   90.7   92.0 19431300     13.1
##  8 NFLX   2014-01-02  367.   368.   361.   363.  12325600     51.8
##  9 NFLX   2016-01-04  109    110    105.   110.  20794800    110. 
## 10 GOOG   2013-01-02  719.   727.   717.   723.   5101500    361. 
## 11 GOOG   2014-01-02 1115.  1118.  1108.  1113.   3656400    556. 
## 12 GOOG   2016-01-04  743    744.   731.   742.   3272800    742.