Tidying methods for STL (Seasonal, Trend, Level) decomposition of time series
Source:R/tidiers_stl.R
tidiers_stl.Rd
Tidying methods for STL (Seasonal, Trend, Level) decomposition of time series
Usage
# S3 method for stl
sw_tidy(x, ...)
# S3 method for stl
sw_tidy_decomp(x, timetk_idx = FALSE, rename_index = "index", ...)
# S3 method for stlm
sw_tidy_decomp(x, timetk_idx = FALSE, rename_index = "index", ...)
# S3 method for stlm
sw_glance(x, ...)
# S3 method for stlm
sw_augment(x, data = NULL, rename_index = "index", timetk_idx = FALSE, ...)
Arguments
- x
An object of class "stl"
- ...
Not used.
- timetk_idx
Used with
sw_tidy_decomp
. WhenTRUE
, uses a timetk index (irregular, typically date or datetime) if present.- rename_index
Used with
sw_tidy_decomp
. A string representing the name of the index generated.- data
Used with
sw_augment
only.
Value
sw_tidy()
wraps sw_tidy_decomp()
sw_tidy_decomp()
returns a tibble with the following time series attributes:
index
: An index is either attempted to be extracted from the model or a sequential index is created for plotting purposesseason
: The seasonal componenttrend
: The trend componentremainder
: observed - (season + trend)seasadj
: observed - season (or trend + remainder)
sw_glance()
returns the underlying ETS or ARIMA model's sw_glance()
results one row with the columns
model.desc
: A description of the model including the three integer components (p, d, q) are the AR order, the degree of differencing, and the MA order.sigma
: The square root of the estimated residual variancelogLik
: The data's log-likelihood under the modelAIC
: The Akaike Information CriterionBIC
: The Bayesian Information CriterionME
: Mean errorRMSE
: Root mean squared errorMAE
: Mean absolute errorMPE
: Mean percentage errorMAPE
: Mean absolute percentage errorMASE
: Mean absolute scaled errorACF1
: Autocorrelation of errors at lag 1
sw_augment()
returns a tibble with the following time series attributes:
index
: An index is either attempted to be extracted from the model or a sequential index is created for plotting purposes.actual
: The original time series.fitted
: The fitted values from the model.resid
: The residual values from the model
Examples
library(dplyr)
library(forecast)
library(sweep)
fit_stl <- USAccDeaths %>%
stl(s.window = "periodic")
sw_tidy_decomp(fit_stl)
#> # A tibble: 72 × 6
#> index observed season trend remainder seasadj
#> <yearmon> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Jan 1973 9007 -820. 9935. -108. 9827.
#> 2 Feb 1973 8106 -1559. 9881. -216. 9665.
#> 3 Mar 1973 8928 -760. 9827. -139. 9688.
#> 4 Apr 1973 9137 -530. 9766. -98.2 9667.
#> 5 May 1973 10017 335. 9704. -22.0 9682.
#> 6 Jun 1973 10826 815. 9637. 374. 10011.
#> 7 Jul 1973 11317 1682. 9569. 65.9 9635.
#> 8 Aug 1973 10744 982. 9500. 262. 9762.
#> 9 Sep 1973 9713 -62.8 9431. 345. 9776.
#> 10 Oct 1973 9938 232. 9343. 363. 9706.
#> # ℹ 62 more rows