These methods tidy the coefficients of NNETAR models of univariate time series.
Usage
# S3 method for class 'nnetar'
sw_tidy(x, ...)
# S3 method for class 'nnetar'
sw_glance(x, ...)
# S3 method for class 'nnetar'
sw_augment(x, data = NULL, timetk_idx = FALSE, rename_index = "index", ...)
Arguments
- x
An object of class "nnetar"
- ...
Additional parameters (not used)
- data
Used with
sw_augment
only.NULL
by default which simply returns augmented columns only. User can supply the original data, which returns the data + augmented columns.- timetk_idx
Used with
sw_augment
only. Uses a irregular timetk index if present.- rename_index
Used with
sw_augment
only. A string representing the name of the index generated.
Value
sw_tidy()
returns one row for each model parameter,
with two columns:
term
: The smoothing parameters (alpha, gamma) and the initial states (l, s0 through s10)estimate
: The estimated parameter value
sw_glance()
returns one row with the columns
model.desc
: A description of the model including the three integer components (p, d, q) are the AR order, the degree of differencing, and the MA order.sigma
: The square root of the estimated residual variancelogLik
: The data's log-likelihood under the model (NA
)AIC
: The Akaike Information Criterion (NA
)BIC
: The Bayesian Information Criterion (NA
)ME
: Mean errorRMSE
: Root mean squared errorMAE
: Mean absolute errorMPE
: Mean percentage errorMAPE
: Mean absolute percentage errorMASE
: Mean absolute scaled errorACF1
: Autocorrelation of errors at lag 1
sw_augment()
returns a tibble with the following time series attributes:
index
: An index is either attempted to be extracted from the model or a sequential index is created for plotting purposes.actual
: The original time series.fitted
: The fitted values from the model.resid
: The residual values from the model
Examples
library(dplyr)
library(forecast)
fit_nnetar <- lynx %>%
nnetar()
sw_tidy(fit_nnetar)
#> # A tibble: 4 × 2
#> term estimate
#> <chr> <dbl>
#> 1 m 1
#> 2 p 8
#> 3 P 0
#> 4 size 4
sw_glance(fit_nnetar)
#> # A tibble: 1 × 12
#> model.desc sigma logLik AIC BIC ME RMSE MAE MPE MAPE MASE ACF1
#> <chr> <dbl> <lgl> <lgl> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 NNAR(8,4) 302. NA NA NA 0.130 302. 214. -37.6 50.8 0.258 0.0269
sw_augment(fit_nnetar)
#> # A tibble: 114 × 4
#> index .actual .fitted .resid
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1821 269 NA NA
#> 2 1822 321 NA NA
#> 3 1823 585 NA NA
#> 4 1824 871 NA NA
#> 5 1825 1475 NA NA
#> 6 1826 2821 NA NA
#> 7 1827 3928 NA NA
#> 8 1828 5943 NA NA
#> 9 1829 4950 4683. 267.
#> 10 1830 2577 2596. -18.6
#> # ℹ 104 more rows