Tidying methods for decomposed time series
Source:R/tidiers_decomposed_ts.R
tidiers_decomposed_ts.Rd
Tidying methods for decomposed time series
Usage
# S3 method for decomposed.ts
sw_tidy_decomp(x, timetk_idx = FALSE, rename_index = "index", ...)
Arguments
- x
An object of class "decomposed.ts"
- timetk_idx
Used with
sw_augment
andsw_tidy_decomp
. WhenTRUE
, uses a timetk index (irregular, typically date or datetime) if present.- rename_index
Used with
sw_augment
andsw_tidy_decomp
. A string representing the name of the index generated.- ...
Not used.
Value
sw_tidy_decomp()
returns a tibble with the following time series attributes:
index
: An index is either attempted to be extracted from the model or a sequential index is created for plotting purposesseason
: The seasonal componenttrend
: The trend componentrandom
: The error componentseasadj
: observed - season
Examples
library(dplyr)
library(forecast)
fit_decomposed <- USAccDeaths %>%
decompose()
sw_tidy_decomp(fit_decomposed)
#> # A tibble: 72 × 6
#> index observed season trend random seasadj
#> <yearmon> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Jan 1973 9007 -806. NA NA 9813.
#> 2 Feb 1973 8106 -1523. NA NA 9629.
#> 3 Mar 1973 8928 -741. NA NA 9669.
#> 4 Apr 1973 9137 -515. NA NA 9652.
#> 5 May 1973 10017 340. NA NA 9677.
#> 6 Jun 1973 10826 745. NA NA 10081.
#> 7 Jul 1973 11317 1679. 9599. 38.2 9638.
#> 8 Aug 1973 10744 986. 9500. 258. 9758.
#> 9 Sep 1973 9713 -109. 9416. 406. 9822.
#> 10 Oct 1973 9938 264. 9349. 325. 9674.
#> # ℹ 62 more rows